IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1965-d328462.html
   My bibliography  Save this article

Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings

Author

Listed:
  • Dafni Despoina Avgoustaki

    (Department of Business Development and Technology, Centre for Energy Technologies, Aarhus University, Birk Centerpark 15, 7400 Herning, Denmark)

  • George Xydis

    (Department of Business Development and Technology, Centre for Energy Technologies, Aarhus University, Birk Centerpark 15, 7400 Herning, Denmark
    Energy Policy and Climate Program, Advanced Academic Programs, Johns Hopkins University, Baltimore, MD 21218, USA)

Abstract

In recent years, a new urban environment in the large metropolitan areas, the so-called “megacities”, has emerged. It is estimated that more than five billion people will be located in urban areas by 2030. Many projects have been initiated in the megacities to support the new ecosystem services in providing the most sustainable and efficient food supply solutions, as well as for transporting fresh and clean vegetables. One of the most important focus areas is research on energy sustainability, including how to optimize energy efficiency to meet the needs of citizens and companies. Indoor urban vertical farming (IUVF) is one of the greatest achievements of our time in agriculture, as it is entirely focused on meeting the food needs of people living in urban areas with the lowest environmental and energy costs. IUVF creates a new foundation in the urban food production system, providing opportunities for many other sustainable activities, such as energy and grey water recycling, but beyond all, it helps citizens to have access in fresh and nutritious fruits and vegetables and to become more creative building up their skills regarding sustainable food production. In this study, the internal rate of return (IRR) and the net present value (NPV) indexes were used to compare IUVF and greenhouse (GH) facilities under various financing schemes. Consistent with similar studies, this research also confirms that IUVF is much more profitable for investors, saving significant resources compared to GHs.

Suggested Citation

  • Dafni Despoina Avgoustaki & George Xydis, 2020. "Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1965-:d:328462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    2. Halloran, Afton & Clement, Jesper & Kornum, Niels & Bucatariu, Camelia & Magid, Jakob, 2014. "Addressing food waste reduction in Denmark," Food Policy, Elsevier, vol. 49(P1), pages 294-301.
    3. Dafni Despoina Avgoustaki, 2019. "Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand," Energies, MDPI, vol. 12(20), pages 1-13, October.
    4. Dorward, Andrew, 2013. "Agricultural labour productivity, food prices and sustainable development impacts and indicators," Food Policy, Elsevier, vol. 39(C), pages 40-50.
    5. Food and Agriculture Organization, 2015. "The State of Food Insecurity in the World Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress," Working Papers id:7595, eSocialSciences.
    6. James Eaves & Stephen Eaves, 2018. "Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(1), pages 43-54, March.
    7. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caixia Ivy Gan & Ruth Soukoutou & Denise Maria Conroy, 2022. "Sustainability Framing of Controlled Environment Agriculture and Consumer Perceptions: A Review," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    2. Francis J. Baumont de Oliveira & Scott Ferson & Ronald A. D. Dyer & Jens M. H. Thomas & Paul D. Myers & Nicholas G. Gray, 2022. "How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    3. Sheridan Ribbing & George Xydis, 2021. "Renewable Energy at Home: A Look into Purchasing a Wind Turbine for Home Use—The Cost of Blindly Relying on One Tool in Decision Making," Clean Technol., MDPI, vol. 3(2), pages 1-12, April.
    4. Jue Wang & Keyi Ju & Xiaozhuo Wei, 2022. "Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    5. Adrián Csordás & István Füzesi, 2023. "The Impact of Technophobia on Vertical Farms," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    6. Delorme, Maxence & Santini, Alberto, 2022. "Energy-efficient automated vertical farms," Omega, Elsevier, vol. 109(C).
    7. Roberto S. Velazquez-Gonzalez & Adrian L. Garcia-Garcia & Elsa Ventura-Zapata & Jose Dolores Oscar Barceinas-Sanchez & Julio C. Sosa-Savedra, 2022. "A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations," Agriculture, MDPI, vol. 12(5), pages 1-21, April.
    8. Hemeng Zhou & Kathrin Specht & Caitlin K. Kirby, 2022. "Consumers’ and Stakeholders’ Acceptance of Indoor Agritecture in Shanghai (China)," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    9. Yiming Shao & Zhugen Wang & Zhiwei Zhou & Haojing Chen & Yuanlong Cui & Zhenghuan Zhou, 2022. "Determinants Affecting Public Intention to Use Micro-Vertical Farming: A Survey Investigation," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael Warner & Bo-Sen Wu & Sarah MacPherson & Mark Lefsrud, 2023. "How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    2. Francis J. Baumont de Oliveira & Scott Ferson & Ronald A. D. Dyer & Jens M. H. Thomas & Paul D. Myers & Nicholas G. Gray, 2022. "How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    3. George Xydis, 2022. "The Importance of Wind Resource Assessment in Plant Factories’ Siting," Energies, MDPI, vol. 15(15), pages 1-3, July.
    4. Čermák, Michal & Ligocká, Marie, 2022. "Could Exist a Causality Between the Most Traded Commodities and Futures Commodity Prices in the Agricultural Market?," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
    5. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Charles Peter Mgeni & Klaus Müller & Stefan Sieber, 2018. "Sunflower Value Chain Enhancements for the Rural Economy in Tanzania: A Village Computable General Equilibrium-CGE Approach," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    7. Lingfei Wang & Yuqin Yang & Guoyan Wang, 2022. "The Clean Your Plate Campaign: Resisting Table Food Waste in an Unstable World," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    8. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    9. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    10. Shazia Kousar & Farhan Ahmed & Amber Pervaiz & Štefan Bojnec, 2021. "Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    11. Greg Husak & Kathryn Grace, 2016. "In search of a global model of cultivation: using remote sensing to examine the characteristics and constraints of agricultural production in the developing world," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 167-177, February.
    12. Piergiuseppe Morone & Pasquale Marcello Falcone & Enrica Imbert & Marcello Morone & Andrea Morone, 2016. "New consumers behaviours in the sharing economy: An experimental analysis on food waste reduction," Working Papers 2016/11, Economics Department, Universitat Jaume I, Castellón (Spain).
    13. Stancu, Violeta & Lähteenmäki, Liisa, 2022. "Consumer-related antecedents of food provisioning behaviors that promote food waste," Food Policy, Elsevier, vol. 108(C).
    14. Jolejole-Foreman, Maria Christina & Olofin, Ibironke & Fawzi, Wafaie & Fink, Gunther, 2016. "Associations between Food Scarcity during Pregnancy and Children’s Survival and Linear Growth in Zambia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235111, Agricultural and Applied Economics Association.
    15. Kaaria, Susan & Osorio, Martha & Wagner, Sophie & Gallina, Ambra, 2016. "Rural women’s participation in producer organizations: An analysis of the barriers that women face and strategies to foster equitable and effective participation," Journal of Gender, Agriculture and Food Security (Agri-Gender), Africa Centre for Gender, Social Research and Impact Assessment, vol. 1(2).
    16. Massimiliano Cerciello, 2021. "Spatial patterns in food waste at the local level. A preliminary analysis for Italian data," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 83-101, February.
    17. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    18. Tricia Glazebrook & Emmanuela Opoku, 2020. "Gender and Sustainability: Learning from Women’s Farming in Africa," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    19. Ali Chalak & Chaza Abou-Daher & Mohamad G. Abiad, 2018. "Generation of food waste in the hospitality and food retail and wholesale sectors: lessons from developed economies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1279-1290, October.
    20. Vardges Hovhannisyan & Marin Bozic, 2017. "Price Endogeneity and Food Demand in Urban China," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 386-406, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1965-:d:328462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.