IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1180-d317471.html
   My bibliography  Save this article

Sustainable Irrigation Management in Paddy Rice Agriculture: A Comparative Case Study of Karangasem Indonesia and Kunisaki Japan

Author

Listed:
  • Matthew Scott Jansing

    (829 Palmers Drive, Silverthorne, CO 80498, USA)

  • Faezeh Mahichi

    (Asia Pacific Studies, Ritsumeikan Asia Pacific University, 1-1 Jumonjibaru, Beppu 874-8577, Japan)

  • Ranahansa Dasanayake

    (Environmental Campus Birkenfeld, Institute for Applied Material Flow Management, Trier University of Applied Sciences, Bldg.-9926/Office-127, P.O.Box. 1380, 55761 Birkenfeld, Germany)

Abstract

Irrigated paddy rice agriculture accounts for a major share of Asia Pacific’s total water withdrawal. Furthermore, climate change induced water scarcity in the Asia-Pacific region is projected to intensify in the near future. Therefore, methods to reduce water consumption through efficiency measures are needed to ensure the long-term (water) sustainability. The irrigation systems, subak of Karangasem, Indonesia, and the tameike of Kunisaki, Japan, are two examples of sustainable paddy rice irrigation. This research, through interviews and an extensive survey, comparatively assessed the socio-environmental sustainability of the two irrigation management systems with special reference to the intensity and nature of social capital, equity of water distribution, water demand, water footprint, and water quality, etc. The prevailing social capital paradigm of each system was also compared to its overall managerial outcomes to analyze how cooperative action contributes to sustainable irrigation management. Both systems show a comparable degree of sustainable irrigation management, ensuring an equitable use of water, and maintain relatively fair water quality due to the land-use practices adapted. However, the systems differ in water demand and water efficiency principally because of the differences in the irrigation management strategies: human and structural. These findings could help devise mechanisms for transitioning to sustainable irrigation management in the commercially-oriented paddy rice agricultural systems across the Asia-Pacific region.

Suggested Citation

  • Matthew Scott Jansing & Faezeh Mahichi & Ranahansa Dasanayake, 2020. "Sustainable Irrigation Management in Paddy Rice Agriculture: A Comparative Case Study of Karangasem Indonesia and Kunisaki Japan," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1180-:d:317471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isham, Jonathan & Kahkonen, Satu, 2002. "Institutional Determinants of the Impact of Community-Based Water Services: Evidence from Sri Lanka and India," Economic Development and Cultural Change, University of Chicago Press, vol. 50(3), pages 667-691, April.
    2. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    3. Lehtonen, Markku, 2004. "The environmental-social interface of sustainable development: capabilities, social capital, institutions," Ecological Economics, Elsevier, vol. 49(2), pages 199-214, June.
    4. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    5. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Made Ika Prastyadewi & Indah Susilowati & Deden Dinar Iskandar, 2020. "Preserving the Existence of Subak in Bali: The Role of Social, Cultural, and Economic Agencies," Economia agro-alimentare, FrancoAngeli Editore, vol. 22(3), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    2. Thuy Thi Ngo & Nghia Tuan Le & Tuyen Minh Hoang & Dung Huu Luong, 2018. "Water Scarcity in Vietnam: a Point of View on Virtual Water Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3579-3593, September.
    3. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    4. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    5. Jubril Olakitan Atanda & Ayşe Öztürk, 2020. "Social criteria of sustainable development in relation to green building assessment tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 61-87, January.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    8. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    9. Xiao-Yu Xu & Wen-Bo Niu & Qing-Dan Jia & Lebogang Nthoiwa & Li-Wei Li, 2021. "Why Do Viewers Engage in Video Game Streaming? The Perspective of Cognitive Emotion Theory and the Moderation Effect of Personal Characteristics," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    10. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    11. Umut Ozkan & Stephan Schott, 2013. "Sustainable Development and Capabilities for the Polar Region," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 114(3), pages 1259-1283, December.
    12. Ignazio Gallo & Nicola Landro & Riccardo La Grassa & Andrea Turconi, 2022. "Food Recommendations for Reducing Water Footprint," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    13. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    14. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    15. Shyam Singh & Nathalie Holvoet & Vivek Pandey, 2018. "Bridging Sustainability and Corporate Social Responsibility: Culture of Monitoring and Evaluation of CSR Initiatives in India," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    16. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    17. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    18. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    19. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    20. Robert L. Oxley & Larry W. Mays & Alan Murray, 2016. "Optimization Model for the Sustainable Water Resource Management of River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3247-3264, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1180-:d:317471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.