IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7621-d414197.html
   My bibliography  Save this article

Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia

Author

Listed:
  • Shuanghui Bao

    (Department of Environmental Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
    School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China)

  • Osamu Nishiura

    (Department of Environmental Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan)

  • Shinichiro Fujimori

    (Department of Environmental Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
    Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Ken Oshiro

    (Department of Environmental Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan)

  • Runsen Zhang

    (Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8529, Japan)

Abstract

Asian countries are major contributors to global air pollution and greenhouse gas emissions, with transportation demand and emissions expected to increase. However, few studies have been performed to evaluate policies that could reduce transport-related emissions in the region. This study explores transport-related CO 2 and air pollutant emissions in major Asian nations along with the impacts of transport, climate, and emission control policies using the Asia-Pacific Integrated Model (AIM)/Transport model. Our results show that by 2050, CO 2 emissions in developing countries will be 1.4–4.7-fold greater than the levels in 2005, while most air pollutant emissions will show large reductions (mean annual reduction rates of 0.2% to 6.1%). Notably, implementation of transport, emission control, and carbon pricing policies would reduce CO 2 emissions by up to 33% and other air pollutants by 43% to 72%, depending on the emission species. An emission control policy represents the strongest approach for short-term and mid-term reduction of air pollutants. A carbon pricing policy would lead to a direct reduction in CO 2 emissions; more importantly, air pollutant emissions would also be effectively reduced. Shifting to public transportation in developing countries can also greatly influence emissions reductions. An increase in traffic speed shows relatively small effects, but can be meaningful in Japan.

Suggested Citation

  • Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7621-:d:414197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akashi, Osamu & Hijioka, Yasuaki & Masui, Toshihiko & Hanaoka, Tatsuya & Kainuma, Mikiko, 2012. "GHG emission scenarios in Asia and the world: The key technologies for significant reduction," Energy Economics, Elsevier, vol. 34(S3), pages 346-358.
    2. Scheiner, Joachim, 2010. "Interrelations between travel mode choice and trip distance: trends in Germany 1976–2002," Journal of Transport Geography, Elsevier, vol. 18(1), pages 75-84.
    3. Brand, Christian & Goodman, Anna & Ogilvie, David, 2014. "Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: A controlled longitudinal study," Applied Energy, Elsevier, vol. 128(C), pages 284-295.
    4. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    5. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    6. Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
    7. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    8. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    9. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    10. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    11. Jaime Vallés-Giménez & Anabel Zárate-Marco, 2020. "A Dynamic Spatial Panel of Subnational GHG Emissions: Environmental Effectiveness of Emissions Taxes in Spanish Regions," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    12. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    2. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    4. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    5. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    6. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    7. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    8. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    9. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    10. Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, vol. 10(1), pages 1-15, January.
    11. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
    12. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    13. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    14. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    15. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    16. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    17. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.
    18. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    19. Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
    20. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7621-:d:414197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.