IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p52-d86932.html
   My bibliography  Save this article

Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030

Author

Listed:
  • Ucok W.R. Siagian

    (Center for Research on Energy Policy, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia)

  • Bintang B. Yuwono

    (Center for Research on Energy Policy, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia)

  • Shinichiro Fujimori

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
    International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria)

  • Toshihiko Masui

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan)

Abstract

This study analyzed the role of low-carbon energy technologies in reducing the greenhouse gas emissions of Indonesia’s energy sector by 2030. The aim of this study was to provide insights into the Indonesian government’s approach to developing a strategy and plan for mitigating emissions and achieving Indonesia’s emission reduction targets by 2030, as pledged in the country’s Intended Nationally Determined Contribution. The Asia-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model was used to quantify three scenarios that had the same socioeconomic assumptions: baseline, countermeasure (CM)1, and CM2, which had a higher emission reduction target than that of CM1. Results of the study showed that an Indonesian low-carbon energy system could be achieved with two pillars, namely, energy efficiency measures and deployment of less carbon-intensive energy systems (i.e., the use of renewable energy in the power and transport sectors, and the use of natural gas in the power sector and in transport). Emission reductions would also be satisfied through the electrification of end-user consumption where the electricity supply becomes decarbonized by deploying renewables for power generation. Under CM1, Indonesia could achieve a 15.5% emission reduction target (compared to the baseline scenario). This reduction could be achieved using efficiency measures that reduce final energy demand by 4%; This would require the deployment of geothermal power plants at a rate six times greater than the baseline scenario and four times the use of hydropower than that used in the baseline scenario. Greater carbon reductions (CM2; i.e., a 27% reduction) could be achieved with similar measures to CM1 but with more intensive penetration. Final energy demand would need to be cut by 13%, deployment of geothermal power plants would need to be seven times greater than at baseline, and hydropower use would need to be five times greater than the baseline case. Carbon prices under CM1 and CM2 were US$16 and US$63 (2005)/tCO 2 , respectively. The mitigation scenarios for 2030 both had a small positive effect on gross domestic product (GDP) compared to the baseline scenario (0.6% and 0.3% for CM1 and CM2, respectively). This is mainly due to the combination of two assumptions. The first is that there would be a great increase in coal-fired power in the baseline scenario. The other assumption is that there is low productivity in coal-related industries. Eventually, when factors such as capital and labor shift from coal-related industries to other low-carbon-emitting sectors in the CM cases are put in place, the total productivity of the economy would offset low-carbon investment.

Suggested Citation

  • Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, vol. 10(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:52-:d:86932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    2. Cecere, Grazia & Corrocher, Nicoletta & Gossart, Cédric & Ozman, Muge, 2014. "Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis," Research Policy, Elsevier, vol. 43(10), pages 1827-1839.
    3. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    4. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    5. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    6. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    7. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    8. Jupesta, Joni, 2012. "Modeling technological changes in the biofuel production system in Indonesia," Applied Energy, Elsevier, vol. 90(1), pages 211-217.
    9. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    10. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuwono, Bintang & Yowargana, Ping & Kranzl, Lukas & Haas, Reinhard & Dewi, Retno Gumilang & Siagian, Ucok Welo Risma & Kraxner, Florian, 2023. "Incorporating grid expansion in an energy system optimisation model - A case study for Indonesia," OSF Preprints aw4bd, Center for Open Science.
    2. Stefan Bakker & Gary Haq & Karl Peet & Sudhir Gota & Nikola Medimorec & Alice Yiu & Gail Jennings & John Rogers, 2019. "Low-Carbon Quick Wins: Integrating Short-Term Sustainable Transport Options in Climate Policy in Low-Income Countries," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    3. Ayla Alkan & Ayla Oğuş Binatlı & Çağaçan Değer, 2018. "Achieving Turkey’s INDC Target: Assessments of NCCAP and INDC Documents and Proposing Conceivable Policies," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    4. Yuki Ichisugi & Toshihiko Masui & Selim Karkour & Norihiro Itsubo, 2019. "Projection of National Carbon Footprint in Japan with Integration of LCA and IAMs," Sustainability, MDPI, vol. 11(23), pages 1-21, December.
    5. Lin, Boqiang & Jia, Zhijie, 2020. "Does the different sectoral coverage matter? An analysis of China's carbon trading market," Energy Policy, Elsevier, vol. 137(C).
    6. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Zhou, Sheng & Tong, Qing & Pan, Xunzhang & Cao, Min & Wang, Hailin & Gao, Ji & Ou, Xunmin, 2021. "Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective," Energy Economics, Elsevier, vol. 95(C).
    8. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    9. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    10. Feng-Fan Liao & Wun-Hwa Chen, 2021. "Will the Management Structure of Energy Administrators Affect the Achievement of the Electrical Efficiency Mandatory Target for Taiwan Factories?," Energies, MDPI, vol. 14(7), pages 1-14, April.
    11. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    12. Djoni Hartono & Ahmad Komarulzaman & Tony Irawan & Anda Nugroho, 2020. "Phasing out Energy Subsidies to Improve Energy Mix: A Dead End," Energies, MDPI, vol. 13(9), pages 1-15, May.
    13. Dzyuba, Yu. & Bakalova, I., 2023. "CGE models for resource-based economy: A comprehensive bibliometric analysis," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 12-50.
    14. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    15. Leila Niamir & Gregor Kiesewetter & Fabian Wagner & Wolfgang Schöpp & Tatiana Filatova & Alexey Voinov & Hans Bressers, 2020. "Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions," Climatic Change, Springer, vol. 158(2), pages 141-160, January.
    16. Marissa Malahayati & Toshihiko Masui, 2021. "Potential impact of introducing emission mitigation policies in Indonesia: how much will Indonesia have to spend?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(8), pages 1-37, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    2. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    3. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    4. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    5. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    6. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    7. Liu, Jing-Yu & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Temporal and spatial distribution of global mitigation costs: INDCs and generation equity," Conference papers 332680, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    9. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    10. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    11. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    12. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    13. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    14. Shinichiro Fujimori & Volker Krey & Detlef Vuuren & Ken Oshiro & Masahiro Sugiyama & Puttipong Chunark & Bundit Limmeechokchai & Shivika Mittal & Osamu Nishiura & Chan Park & Salony Rajbhandari & Dieg, 2021. "A framework for national scenarios with varying emission reductions," Nature Climate Change, Nature, vol. 11(6), pages 472-480, June.
    15. Nicoletta Corrocher & Ilaria Solito, 2017. "How do firms capture value from environmental innovations? An empirical analysis on European SMEs," Industry and Innovation, Taylor & Francis Journals, vol. 24(5), pages 569-585, July.
    16. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Tian, Xu, 2019. "Impacts of export restructuring on national economy and CO2 emissions: A general equilibrium analysis for China," Applied Energy, Elsevier, vol. 248(C), pages 64-78.
    17. Liu, Zhiqing & Geng, Yong & Dai, Hancheng & Wilson, Jeffrey & Xie, Yang & Wu, Rui & You, Wei & Yu, Zhongjue, 2018. "Regional impacts of launching national carbon emissions trading market: A case study of Shanghai," Applied Energy, Elsevier, vol. 230(C), pages 232-240.
    18. Fusillo, Fabrizio, 2023. "Green Technologies and diversity in the knowledge search and output phases: Evidence from European Patents," Research Policy, Elsevier, vol. 52(4).
    19. Li, Zhaoling & Dai, Hancheng & Sun, Lu & Xie, Yang & Liu, Zhu & Wang, Peng & Yabar, Helmut, 2018. "Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China," Energy Policy, Elsevier, vol. 113(C), pages 9-19.
    20. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:52-:d:86932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.