IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4688-d261733.html
   My bibliography  Save this article

Prediction of Exhaust Emission Costs in Air and Road Transportation

Author

Listed:
  • Olja Čokorilo

    (Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Ivan Ivković

    (Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Snežana Kaplanović

    (Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

Abstract

In this paper, the calculation of exhaust emission costs originating from aircraft and road vehicles in the base year 2017 and in the forecasting year 2032, in the Republic of Serbia, was carried out. The presented methodology includes a number of influential factors for air transport (airport capacity, number of operations, aircraft type, relevant engine, range) and for road transport (changing of traffic volumes, design and operating speeds, the quality of the pavement structure, type of terrain and category of road sections, dependence of exhaust emission from changes in vehicle speed). It was found that in the current operating conditions, the dominant costs in the total exhaust emission costs are the costs of nitrogen oxides (61%) in road transport, whilst carbon dioxide costs are dominant in air transport (52%). In the future, carbon dioxide costs will have a share of over 80% in the road transport sector and over 58% in the air transport sector in total exhaust emission costs. The average exhaust emission costs per one aircraft operation (international flights) will range from 141 to 145€. In road transport, the average exhaust emission costs at 100 km in 2032 will range from 1.8 to 2.2€.

Suggested Citation

  • Olja Čokorilo & Ivan Ivković & Snežana Kaplanović, 2019. "Prediction of Exhaust Emission Costs in Air and Road Transportation," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4688-:d:261733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Hao & Feiqi Liu & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Quantifying the Energy, Environmental, Economic, Resource Co-Benefits and Risks of GHG Emissions Abatement: The Case of Passenger Vehicles in China," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    2. Lumbreras, Julio & Borge, Rafael & Guijarro, Alberto & Lopez, Jose M. & Rodríguez, M. Encarnacion, 2014. "A methodology to compute emission projections from road transport (EmiTRANS)," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 165-176.
    3. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    4. Givoni, Moshe & Rietveld, Piet, 2010. "The environmental implications of airlines' choice of aircraft size," Journal of Air Transport Management, Elsevier, vol. 16(3), pages 159-167.
    5. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    6. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    2. Daniel Rey Aldana & Francisco Reyes Santias & Pilar Mazón Ramos & Manuel Portela Romero & Sergio Cinza Sanjurjo & Belén Álvarez Álvarez & Rosa Agra Bermejo & Francisco Gude Sampedro & José R. González, 2021. "Cost and Potential Savings of Electronic Consultation and Its Relationship with Reduction in Atmospheric Pollution," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    3. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Siham G. Farrag & Fatma Outay & Ansar Ul-Haque Yasar & Moulay Youssef El-Hansali, 2020. "Evaluating Active Traffic Management (ATM) Strategies under Non-Recurring Congestion: Simulation-Based with Benefit Cost Analysis Case Study," Sustainability, MDPI, vol. 12(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    2. Usman Akbar & József Popp & Hameed Khan & Muhammad Asif Khan & Judit Oláh, 2020. "Energy Efficiency in Transportation along with the Belt and Road Countries," Energies, MDPI, vol. 13(10), pages 1-20, May.
    3. Lay Eng Teoh & Hooi Ling Khoo, 2016. "Fleet Planning Decision-Making: Two-Stage Optimization with Slot Purchase," Journal of Optimization, Hindawi, vol. 2016, pages 1-12, June.
    4. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    5. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    6. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    7. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    8. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    9. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    10. Bel, Germà & Holst, Maximilian, 2018. "Evaluation of the impact of Bus Rapid Transit on air pollution in Mexico City," Transport Policy, Elsevier, vol. 63(C), pages 209-220.
    11. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    12. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    13. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    14. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    15. Mohammadian, Iman & Abareshi, Ahmad & Abbasi, Babak & Goh, Mark, 2019. "Airline capacity decisions under supply-demand equilibrium of Australia’s domestic aviation market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 108-121.
    16. Sheng Xu & Jingxue Chen & Demei Wen, 2023. "Research on the Impact of Carbon Trading Policy on the Structural Upgrading of Marine Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    17. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    18. Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
    19. Gudmundsson, Sveinn & Paleari, Stefano & Redondi, Renato, 2014. "Spillover effects of the development constraints in London Heathrow Airport," Journal of Transport Geography, Elsevier, vol. 35(C), pages 64-74.
    20. Abdul Hayy Haziq Mohamad & Muhamad Rias K. V. Zainuddin & Rossazana Ab-Rahim, 2023. "Does Renewable Energy Transition in the USA and China Overcome Environmental Degradation?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 234-243, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4688-:d:261733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.