IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3242-d239186.html
   My bibliography  Save this article

Two-Stage Covering Location Model for Air–Ground Medical Rescue System

Author

Listed:
  • Ming Zhang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yu Zhang

    (Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL 33620, USA)

  • Zhifeng Qiu

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Hanlin Wu

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

This study tackled the multimodal facility location problem in emergency medical rescue. First, an intermodal setting was suggested, i.e., considering cooperation between ground ambulances and helicopters in emergency medical rescues. Specifically, four scheduling modes were structured: air only, ground only, air-ground combined mode if landing and take-off site for helicopters near the wounded is available, and air-ground transshipment if the landing and take-off site for helicopters near the wounded is not available. Second, a two-stage covering location model was proposed. In the first stage, a set-covering model was developed to achieve maximum coverage and minimal total construction cost of emergency rescue facilities. The optimal mixed allocation proportion of helicopters and ground ambulances was then obtained to guarantee cohesion between the hierarchical models and covering characteristics and the economic efficiency of location results. In the second stage, for given emergency locations, an emergency scheduling mode matrix was constructed for meeting response time and total rescue time constraints. The proposed model obtains optimal results in terms of coverage, construction cost, and rescue time. A case study of Beijing, China validated the feasibility and efficiency of the two-stage covering location model for multimodal emergency medical rescue network. The proposed air-ground rescue system and two-stage covering location model can be extended and also used for large-scale disaster rescue management.

Suggested Citation

  • Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3242-:d:239186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    2. Yi, Pengfei & George, Santhosh K. & Paul, Jomon Aliyas & Lin, Li, 2010. "Hospital capacity planning for disaster emergency management," Socio-Economic Planning Sciences, Elsevier, vol. 44(3), pages 151-160, September.
    3. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    4. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    5. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    6. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    7. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    8. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    9. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    10. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    11. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    12. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    13. Serhan Duran & Marco A. Gutierrez & Pinar Keskinocak, 2011. "Pre-Positioning of Emergency Items for CARE International," Interfaces, INFORMS, vol. 41(3), pages 223-237, June.
    14. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    15. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    16. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İbrahim Miraç Eligüzel & Eren Özceylan & Gerhard-Wilhelm Weber, 2023. "Location-allocation analysis of humanitarian distribution plans: a case of United Nations Humanitarian Response Depots," Annals of Operations Research, Springer, vol. 324(1), pages 825-854, May.
    2. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    3. Rajendran, Suchithra & Shulman, Jake, 2020. "Study of emerging air taxi network operation using discrete-event systems simulation approach," Journal of Air Transport Management, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    5. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    8. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    9. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    10. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    11. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    12. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    13. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    14. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    15. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    18. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    19. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    20. Daniel A. Griffith & Bradley Boehmke & Randy V. Bradley & Benjamin T. Hazen & Alan W. Johnson, 2019. "Embedded analytics: improving decision support for humanitarian logistics operations," Annals of Operations Research, Springer, vol. 283(1), pages 247-265, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3242-:d:239186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.