IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-017-2598-9.html
   My bibliography  Save this article

Emergency logistics for wildfire suppression based on forecasted disaster evolution

Author

Listed:
  • Zhongzhen Yang

    (Dalian Maritime University)

  • Liquan Guo

    (Dalian Maritime University)

  • Zaili Yang

    (Dalian Maritime University
    Liverpool John Moores University)

Abstract

This paper aims to develop a two-layer emergency logistics system with a single depot and multiple demand sites for wildfire suppression and disaster relief. For the first layer, a fire propagation model is first built using both the flame-igniting attributes of wildfires and the factors affecting wildfire propagation and patterns. Second, based on the forecasted propagation behavior, the emergency levels of fire sites in terms of demand on suppression resources are evaluated and prioritized. For the second layer, considering the prioritized fire sites, the corresponding resource allocation problem and vehicle routing problem (VRP) are investigated and addressed. The former is approached using a model that can minimize the total forest loss (from multiple sites) and suppression costs incurred accordingly. This model is constructed and solved using principles of calculus. To address the latter, a multi-objective VRP model is developed to minimize both the travel time and cost of the resource delivery vehicles. A heuristic algorithm is designed to provide the associated solutions of the VRP model. As a result, this paper provides useful insights into effective wildfire suppression by rationalizing resources regarding different fire propagation rates. The supporting models can also be generalized and tailored to tackle logistics resource optimization issues in dynamic operational environments, particularly those sharing the same feature of single supply and multiple demands in logistics planning and operations (e.g., allocation of ambulances and police forces).

Suggested Citation

  • Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
  • Handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2598-9
    DOI: 10.1007/s10479-017-2598-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2598-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2598-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    2. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    3. Sheu, Jiuh-Biing, 2007. "Challenges of emergency logistics management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 655-659, November.
    4. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    5. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    6. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    7. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    8. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    9. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    10. Matellini, D.B. & Wall, A.D. & Jenkinson, I.D. & Wang, J. & Pritchard, R., 2013. "Modelling dwelling fire development and occupancy escape using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 75-91.
    11. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    12. Wohlgemuth, Sascha & Oloruntoba, Richard & Clausen, Uwe, 2012. "Dynamic vehicle routing with anticipation in disaster relief," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 261-271.
    13. Nezih Altay & Raktim Pal, 2014. "Information Diffusion among Agents: Implications for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1015-1027, June.
    14. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    15. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    16. Aurelie Charles & Matthieu Lauras & Luk N. van Wassenhove & Lionel Dupont, 2016. "Designing an efficient humanitarian supply network," Post-Print hal-01532132, HAL.
    17. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    18. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    19. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    20. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    21. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    22. Haiganoush K. Preisler & M. A. Krawchuk & M. A. Moritz, 2014. "Burning issues: statistical analyses of global fire data to inform assessments of environmental change," Environmetrics, John Wiley & Sons, Ltd., vol. 25(6), pages 472-481, September.
    23. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    24. Haiganoush K. Preisler & A. A. Ager & H. K. Preisler & B. Arca & D. Spano & M. Salis, 2014. "Wildfire risk estimation in the Mediterranean area," Environmetrics, John Wiley & Sons, Ltd., vol. 25(6), pages 384-396, September.
    25. Oloruntoba, Richard, 2010. "An analysis of the Cyclone Larry emergency relief chain: Some key success factors," International Journal of Production Economics, Elsevier, vol. 126(1), pages 85-101, July.
    26. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    27. Powell, J.H. & Mustafee, N. & Chen, A.S. & Hammond, M., 2016. "System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis," European Journal of Operational Research, Elsevier, vol. 254(2), pages 550-564.
    28. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    29. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    30. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kangye Tan & Weihua Liu & Fang Xu & Chunsheng Li, 2023. "Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency," Mathematics, MDPI, vol. 11(5), pages 1-18, March.
    2. Zhang, Lingye & Lu, Jing & Yang, Zaili, 2021. "Optimal scheduling of emergency resources for major maritime oil spills considering time-varying demand and transportation networks," European Journal of Operational Research, Elsevier, vol. 293(2), pages 529-546.
    3. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Jamal Al Qundus & Kosai Dabbour & Shivam Gupta & Régis Meissonier & Adrian Paschke, 2022. "Wireless sensor network for AI-based flood disaster detection," Annals of Operations Research, Springer, vol. 319(1), pages 697-719, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    5. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    6. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    7. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    8. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    9. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    10. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    11. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    12. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    13. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    14. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    15. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    16. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    17. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    18. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    19. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    20. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2598-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.