IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i2p736-749.html
   My bibliography  Save this article

Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach

Author

Listed:
  • Erdemir, Elif Tokar
  • Batta, Rajan
  • Rogerson, Peter A.
  • Blatt, Alan
  • Flanigan, Marie

Abstract

Aeromedical and ground ambulance services often team up in responding to trauma crashes, especially when the emergency helicopter is unable to land at the crash scene. We propose location-coverage models and a greedy heuristic for their solution to simultaneously locate ground and air ambulances, and landing zones (transfer points). We provide a coverage definition based on both response time and total service time, and consider three coverage options; only ground emergency medical services (EMS) coverage, only air EMS coverage, or joint coverage of ground and air EMS in which the patient is transferred from an ambulance into an emergency helicopter at a transfer point. To analyze this complex coverage situation we develop two sets of models, which are variations of the Location Set Covering Problem (LSCP) and the Maximal Covering Location Problem (MCLP). These models address uncertainty in spatial distribution of motor vehicle crash locations by providing coverage to a given set of both crash nodes and paths. The models also consider unavailability of ground ambulances by drawing upon concepts from backup coverage models. We illustrate our results on a case study that uses crash data from the state of New Mexico. The case study shows that crash node and path coverage percentage values decrease when ground ambulances are utilized only within their own jurisdiction.

Suggested Citation

  • Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:736-749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00403-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdemir, Elif Tokar & Batta, Rajan & Spielman, Seth & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2008. "Location coverage models with demand originating from nodes and paths: Application to cellular network design," European Journal of Operational Research, Elsevier, vol. 190(3), pages 610-632, November.
    2. Branas, Charles C. & Revelle, Charles S., 2001. "An iterative switching heuristic to locate hospitals and helicopters," Socio-Economic Planning Sciences, Elsevier, vol. 35(1), pages 11-30, March.
    3. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    4. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    5. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    6. Kenneth R. Chelst & Ziv Barlach, 1981. "Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance," Management Science, INFORMS, vol. 27(12), pages 1390-1409, December.
    7. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    8. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    9. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    10. Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
    11. Bianchi, Geoffrey & Church, Richard L., 1988. "A hybrid fleet model for emergency medical service system design," Social Science & Medicine, Elsevier, vol. 26(1), pages 163-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reuter-Oppermann, Melanie & Wolff, Clemens & Pumplun, Luisa, 2021. "Next Frontiers in Emergency Medical Services in Germany: Identifying Gaps between Academia and Practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124665, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Khayal, Danya & Pradhananga, Rojee & Pokharel, Shaligram & Mutlu, Fatih, 2015. "A model for planning locations of temporary distribution facilities for emergency response," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 22-30.
    3. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    4. Timothy C. Matisziw & Mark Ritchey & Robert MacKenzie, 2022. "Change of Scene: The Geographic Dynamics of Resilience to Vehicular Accidents," Networks and Spatial Economics, Springer, vol. 22(3), pages 587-606, September.
    5. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    6. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    7. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    8. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    9. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    10. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    11. Baray, Jérôme & Cliquet, Gérard, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Journal of Business Research, Elsevier, vol. 66(1), pages 127-132.
    12. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    13. Junhu Ruan & Felix T. S. Chan & Xiaofeng Zhao, 2018. "Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    14. Baofeng Sun & Jiaojiao Liu & Junyi Hao & Xiuxiu Shen & Xinhua Mao & Xianmin Song, 2020. "Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    15. DuBois, Eric & Schmidt, Adam & Albert, Laura A., 2021. "Location of trauma care resources with inter-facility patient transfers," Operations Research Perspectives, Elsevier, vol. 8(C).
    16. Vicencio-Medina, Salvador J. & Rios-Solis, Yasmin A. & Ibarra-Rojas, Omar Jorge & Cid-Garcia, Nestor M. & Rios-Solis, Leonardo, 2023. "The maximal covering location problem with accessibility indicators and mobile units," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    17. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    2. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    3. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    4. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    5. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    6. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    7. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    8. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    9. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    10. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    11. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    12. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    13. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    14. Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
    15. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    16. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    17. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    18. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    19. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    20. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:736-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.