IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2952-d233878.html
   My bibliography  Save this article

Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care

Author

Listed:
  • María Carmen Carnero

    (Technical School of Industrial Engineering, University of Castilla-la Mancha, 13071 Ciudad Real, Spain
    CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Andrés Gómez

    (Technical School of Industrial Engineering, University of Castilla-la Mancha, 13071 Ciudad Real, Spain)

Abstract

Systems that supply medicinal gases—oxygen, nitrous oxide and medical air—serve all care units of a hospital; for example, they feed distribution systems for operating theatres, neonatal and pediatric units, dialysis, X-ray, casualty, special tests, outpatients, etc. Systems for the provision of medicinal gases are therefore critical in guaranteeing hospital sustainability, since the functionality or availability of other hospital systems depends on them. Availability of 100% in these systems would avoid the need to reschedule patient appointments. It would also eliminate repeat testing, which poses risk to staff and patients, and could avoid affecting people’s lives through unavailability of, for example, operating theatres or intensive care units. All this contributes to a more rational resource consumption and an increase in quality of care both for the hospital itself and for patients and visitors. Although these systems are of vital importance to health care organizations, no previous work has been found in the literature that optimizes the technical decisions on supply in these systems. This research describes a model for these systems via continuous-time Markov chains. The results obtained are used in a multicriteria model constructed with the measuring attractiveness by a categorical-based evaluation technique (MACBETH) approach. In order to assess reliability when incorporating doubt or uncertainty via the MACBETH approach, the model has been validated by means of the fuzzy analytic hierarchy process. The aim is to obtain the best objective decision, with respect to the design of these systems, by analyzing the use of economic resources, the risks, and the impact on hospital activity, all with the aim of guaranteeing the best quality of care. The models constructed by means of MACBETH and the fuzzy analytic hierarchy process give, as the most suitable alternatives, duplicate the external supply in medical oxygen systems and maintain the original design conditions for supply systems of nitrous oxide and medicinal air.

Suggested Citation

  • María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2952-:d:233878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    2. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    3. Karl Widerquist, 2018. "The Bottom Line," Exploring the Basic Income Guarantee, in: A Critical Analysis of Basic Income Experiments for Researchers, Policymakers, and Citizens, chapter 0, pages 93-98, Palgrave Macmillan.
    4. Xuedong Liang & Xianli Zhao & Min Wang & Zhi Li, 2018. "Small and Medium-Sized Enterprises Sustainable Supply Chain Financing Decision Based on Triple Bottom Line Theory," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    5. Keun-Sik Park & Young-Joon Seo & A-Rom Kim & Min-Ho Ha, 2018. "Ship Acquisition of Shipping Companies by Sale & Purchase Activities for Sustainable Growth: Exploratory Fuzzy-AHP Application," Sustainability, MDPI, vol. 10(6), pages 1-13, May.
    6. Bana e Costa, Carlos A. & Ensslin, Leonardo & Correa, Emerson C. & Vansnick, Jean-Claude, 1999. "Decision Support Systems in action: Integrated application in a multicriteria decision aid process," European Journal of Operational Research, Elsevier, vol. 113(2), pages 315-335, March.
    7. Devarun Ghosh & Sandip Roy, 2010. "A decision-making framework for process plant maintenance," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(1), pages 78-98.
    8. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    9. Hayashi, Kiyotada, 2000. "Multicriteria analysis for agricultural resource management: A critical survey and future perspectives," European Journal of Operational Research, Elsevier, vol. 122(2), pages 486-500, April.
    10. S Taghipour & D Banjevic & A K S Jardine, 2011. "Prioritization of medical equipment for maintenance decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1666-1687, September.
    11. Al-Najjar, Basim & Alsyouf, Imad, 2003. "Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making," International Journal of Production Economics, Elsevier, vol. 84(1), pages 85-100, April.
    12. Bana e Costa, Carlos A. & Chagas, Manuel P., 2004. "A career choice problem: An example of how to use MACBETH to build a quantitative value model based on qualitative value judgments," European Journal of Operational Research, Elsevier, vol. 153(2), pages 323-331, March.
    13. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    14. Ivlev, Ilya & Vacek, Jakub & Kneppo, Peter, 2015. "Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(1), pages 216-228.
    15. Ishizaka, Alessio & Nemery, Philippe, 2014. "Assigning machines to incomparable maintenance strategies with ELECTRE-SORT," Omega, Elsevier, vol. 47(C), pages 45-59.
    16. Bertolini, Massimo & Bevilacqua, Maurizio, 2006. "A combined goal programming—AHP approach to maintenance selection problem," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 839-848.
    17. Goossens, Adriaan J.M. & Basten, Rob J.I., 2015. "Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 31-41.
    18. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    19. Zhu, Ke-Jun & Jing, Yu & Chang, Da-Yong, 1999. "A discussion on Extent Analysis Method and applications of fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 116(2), pages 450-456, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadir Kaan Göncü & Onur Çetin, 2022. "A Decision Model for Supplier Selection Criteria in Healthcare Enterprises with Dematel ANP Method," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    2. Pereira, Miguel Alves & Machete, Inês Freire & Ferreira, Diogo Cunha & Marques, Rui Cunha, 2020. "Using multi-criteria decision analysis to rank European health systems: The Beveridgian financing case," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    3. Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
    4. Fahime Lotfian Delouyi & Seyed Hassan Ghodsypour & Maryam Ashrafi, 2021. "Dynamic Portfolio Selection in Gas Transmission Projects Considering Sustainable Strategic Alignment and Project Interdependencies through Value Analysis," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    5. Miroslav Variny & Dominika Jediná & Patrik Furda, 2021. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361," Energies, MDPI, vol. 14(20), pages 1-8, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carnero, María Carmen & Gómez, Andrés, 2017. "Maintenance strategy selection in electric power distribution systems," Energy, Elsevier, vol. 129(C), pages 255-272.
    2. María Carmen Carnero, 2020. "Fuzzy Multicriteria Models for Decision Making in Gamification," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    3. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    4. Sergio Domínguez & María Carmen Carnero, 2020. "Fuzzy Multicriteria Modelling of Decision Making in the Renewal of Healthcare Technologies," Mathematics, MDPI, vol. 8(6), pages 1-46, June.
    5. Satish Tyagi, 2016. "An improved fuzzy-AHP (IFAHP) approach to compare SECI modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(15), pages 4520-4536, August.
    6. María Carmen Carnero & Andrés Gómez, 2018. "Optimization of Maintenance in Production and Storage Systems for Domestic Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 359-380, January.
    7. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    8. Mahmood Shafiee & Ashraf Labib & Jhareswar Maiti & Andrew Starr, 2019. "Maintenance strategy selection for multi-component systems using a combined analytic network process and cost-risk criticality model," Journal of Risk and Reliability, , vol. 233(2), pages 89-104, April.
    9. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    10. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    11. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    12. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    13. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    14. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    15. Mohammad Sadeghravesh & Hassan Khosravi & Soudeh Ghasemian, 2015. "Application of fuzzy analytical hierarchy process for assessment of combating-desertification alternatives in central Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 653-667, January.
    16. Yibin Zhang & Kevin W. Li & Zhou-Jing Wang, 2017. "Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights," Group Decision and Negotiation, Springer, vol. 26(2), pages 409-436, March.
    17. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    18. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto & Bozóki, Sándor, 2023. "Robustness to rank reversal in pairwise comparison matrices based on uncertainty bounds," European Journal of Operational Research, Elsevier, vol. 304(2), pages 676-688.
    19. Yu-Jie Wang, 2023. "Extending Quality Function Deployment and Analytic Hierarchy Process under Interval-Valued Fuzzy Environment for Evaluating Port Sustainability," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    20. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2952-:d:233878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.