IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1319-d396298.html
   My bibliography  Save this article

A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example

Author

Listed:
  • Hsin-Chieh Wu

    (Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan)

  • Toly Chen

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan)

  • Chin-Hau Huang

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan
    Department of Computer-Aided Industrial Design, Overseas Chinese University, 100, Chiao Kwang Road, Seatwen, Taichung City 407, Taiwan)

Abstract

Most existing fuzzy AHP (FAHP) methods use triangular fuzzy numbers to approximate the fuzzy priorities of criteria, which is inaccurate. To obtain accurate fuzzy priorities, time-consuming alpha-cut operations are usually required. In order to improve the accuracy and efficiency of estimating the fuzzy priorities of criteria, the piecewise linear fuzzy geometric mean (PLFGM) approach is proposed in this study. The PLFGM method estimates the α cuts of fuzzy priorities and then connects these α cuts with straight lines. As a result, the estimated fuzzy priorities will have piecewise linear membership functions that resemble the real shapes. The PLFGM approach has been applied to the identification of critical features for a smart backpack design. According to the experimental results, the PLFGM approach improved the accuracy and efficiency of estimating the fuzzy priorities of these critical features by 33% and 80%, respectively.

Suggested Citation

  • Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1319-:d:396298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    2. G. Sakthivel & D. Saravanakumar & T. Muthuramalingam, 2018. "Application of failure mode and effect analysis in manufacturing industry - an integrated approach with FAHP-fuzzy TOPSIS and FAHP-fuzzy VIKOR," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 24(3), pages 398-423.
    3. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    4. Awasthi, Anjali & Govindan, Kannan & Gold, Stefan, 2018. "Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach," International Journal of Production Economics, Elsevier, vol. 195(C), pages 106-117.
    5. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    6. Leung, L. C. & Cao, D., 2000. "On consistency and ranking of alternatives in fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 124(1), pages 102-113, July.
    7. Tin-Chih Toly Chen & Yu-Cheng Wang & Chin-Hau Huang, 2020. "An Evolving Partial Consensus Fuzzy Collaborative Forecasting Approach," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    8. Kumar, N. Vinod & Ganesh, L. S., 1996. "A simulation-based evaluation of the approximate and the exact eigenvector methods employed in AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 656-662, December.
    9. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    10. Sachin K. Patil & Ravi Kant, 2014. "Ranking the barriers of knowledge management adoption in supply chain using fuzzy AHP method," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 8(1), pages 52-75.
    11. Yu-Cheng Wang & Tin-Chih Toly Chen, 2019. "A Partial-Consensus Posterior-Aggregation FAHP Method—Supplier Selection Problem as an Example," Mathematics, MDPI, vol. 7(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsin-Chieh Wu & Yu-Cheng Wang & Tin-Chih Toly Chen, 2020. "Assessing and Comparing COVID-19 Intervention Strategies Using a Varying Partial Consensus Fuzzy Collaborative Intelligence Approach," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    2. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    3. Nitidetch Koohathongsumrit & Pongchanun Luangpaiboon, 2022. "An integrated FAHP–ZODP approach for strategic marketing information system project selection," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1792-1809, September.
    4. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    5. María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
    6. Deepak Lamba & Devendra K. Yadav & Akhilesh Barve & Ganapati Panda, 2020. "Prioritizing barriers in reverse logistics of E-commerce supply chain using fuzzy-analytic hierarchy process," Electronic Commerce Research, Springer, vol. 20(2), pages 381-403, June.
    7. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto & Bozóki, Sándor, 2023. "Robustness to rank reversal in pairwise comparison matrices based on uncertainty bounds," European Journal of Operational Research, Elsevier, vol. 304(2), pages 676-688.
    8. Yu-Jie Wang, 2023. "Extending Quality Function Deployment and Analytic Hierarchy Process under Interval-Valued Fuzzy Environment for Evaluating Port Sustainability," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    9. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Irina Vinogradova-Zinkevič, 2023. "Comparative Sensitivity Analysis of Some Fuzzy AHP Methods," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    11. Hsin-Chieh Wu & Tin-Chih Toly Chen & Chin-Hau Huang & Yun-Cian Shih, 2020. "Comparing Built-in Power Banks for a Smart Backpack Design Using an Auto-Weighting Fuzzy-Weighted-Intersection FAHP Approach," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    12. Rezaei, Jafar & Ortt, Roland, 2013. "Multi-criteria supplier segmentation using a fuzzy preference relations based AHP," European Journal of Operational Research, Elsevier, vol. 225(1), pages 75-84.
    13. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    14. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    15. Dinçer, Hasan & Yüksel, Serhat, 2019. "An integrated stochastic fuzzy MCDM approach to the balanced scorecard-based service evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 93-112.
    16. Tsai, Pei-Hsuan & Tang, Jia-Wei & Chen, Chih-Jou, 2022. "Partnerships that go places: How to successfully market products from vendor partners at retail stores from the vendors’ perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    17. Marcus V. C. Fagundes & Bernd Hellingrath & Francisco G. M. Freires, 2021. "Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP," Logistics, MDPI, vol. 5(1), pages 1-17, March.
    18. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    19. Truong Thi Hue & Nguyen Anh Tuan & Luu Huu Van & Luong Thuy Lien & Do Dieu Huong & Luong Tram Anh & Nghiem Xuan Huy & Luu Quoc Dat, 2022. "Prioritization of Factors Impacting Lecturer Research Productivity Using an Improved Fuzzy Analytic Hierarchy Process Approach," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    20. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1319-:d:396298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.