IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p554-d343728.html
   My bibliography  Save this article

An Evolving Partial Consensus Fuzzy Collaborative Forecasting Approach

Author

Listed:
  • Tin-Chih Toly Chen

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan)

  • Yu-Cheng Wang

    (Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan)

  • Chin-Hau Huang

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan)

Abstract

Current fuzzy collaborative forecasting methods have rarely considered how to determine the appropriate number of experts to optimize forecasting performance. Therefore, this study proposes an evolving partial-consensus fuzzy collaborative forecasting approach to address this issue. In the proposed approach, experts apply various fuzzy forecasting methods to forecast the same target, and the partial consensus fuzzy intersection operator, rather than the prevalent fuzzy intersection operator, is applied to aggregate the fuzzy forecasts by experts. Meaningful information can be determined by observing partial consensus fuzzy intersection changes as the number of experts varies, including the appropriate number of experts. We applied the evolving partial-consensus fuzzy collaborative forecasting approach to forecasting dynamic random access memory product yield with real data. The proposed approach forecasting performance surpassed current fuzzy collaborative forecasting that considered overall consensus, and it increased forecasting accuracy 13% in terms of mean absolute percentage error.

Suggested Citation

  • Tin-Chih Toly Chen & Yu-Cheng Wang & Chin-Hau Huang, 2020. "An Evolving Partial Consensus Fuzzy Collaborative Forecasting Approach," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:554-:d:343728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toly Chen & Yu-Cheng Wang, 2013. "Semiconductor Yield Forecasting Using Quadratic-Programming-Based Fuzzy Collaborative Intelligence Approach," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, May.
    2. Zaifang Zhang & Danhua Xu & Egon Ostrosi & Li Yu & Beibei Fan, 2019. "A systematic decision-making method for evaluating design alternatives of product service system based on variable precision rough set," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1895-1909, April.
    3. R. O. Parreiras & P. Ya. Ekel & D. C. Morais, 2012. "Fuzzy Set Based Consensus Schemes for Multicriteria Group Decision making Applied to Strategic Planning," Group Decision and Negotiation, Springer, vol. 21(2), pages 153-183, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsin-Chieh Wu & Tin-Chih Toly Chen & Chin-Hau Huang & Yun-Cian Shih, 2020. "Comparing Built-in Power Banks for a Smart Backpack Design Using an Auto-Weighting Fuzzy-Weighted-Intersection FAHP Approach," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    2. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    3. Hsin-Chieh Wu & Yu-Cheng Wang & Tin-Chih Toly Chen, 2020. "Assessing and Comparing COVID-19 Intervention Strategies Using a Varying Partial Consensus Fuzzy Collaborative Intelligence Approach," Mathematics, MDPI, vol. 8(10), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    2. Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
    3. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    4. Zhibin Wu & Jie Xiao & Ivan Palomares, 2019. "Direct Iterative Procedures for Consensus Building with Additive Preference Relations Based on the Discrete Assessment Scale," Group Decision and Negotiation, Springer, vol. 28(6), pages 1167-1191, December.
    5. Matheus Pereira Libório & Lívia Maria Leite Silva & Petr Iakovlevitch Ekel & Letícia Ribeiro Figueiredo & Patrícia Bernardes, 2022. "Consensus-Based Sub-Indicator Weighting Approach: Constructing Composite Indicators Compatible with Expert Opinion," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1073-1099, December.
    6. Toly Chen & Yu-Cheng Wang, 2018. "A fuzzy collaborative intelligence approach for estimating future yield with DRAM as an example," Operational Research, Springer, vol. 18(3), pages 671-688, October.
    7. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    8. Yong Liu & Ting Zhou & Jeffrey Yi-Lin Forrest, 2020. "A Multivariate Minimum Cost Consensus Model for Negotiations of Holdout Demolition," Group Decision and Negotiation, Springer, vol. 29(5), pages 871-899, October.
    9. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    10. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    11. Zhang, Hengjie & Dong, Yucheng & Xiao, Jing & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Marcelo Loor & Ana Tapia-Rosero & Guy De Tré, 2021. "Towards Better Concordance among Contextualized Evaluations in FAST-GDM Problems," Mathematics, MDPI, vol. 9(1), pages 1-17, January.
    13. Patrícia Bernardes & Petr Iakovlevitch Ekel & Sérgio Fernando Loureiro Rezende & Joel Gomes Pereira Júnior & Angélica Cidália Gouveia Santos & Maurício Andrade Rodrigues Costa & Rafael Lopes Carvalhai, 2022. "Cost of doing business index in Latin America," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2233-2252, August.
    14. L. R. Figueiredo & E. A. Frej & G. L. Soares & P. Ya. Ekel, 2021. "Group Decision-Based Construction of Scenarios for Multicriteria Analysis in Conditions of Uncertainty on the Basis of Quantitative and Qualitative Information," Group Decision and Negotiation, Springer, vol. 30(3), pages 665-696, June.
    15. Galo, Nadya Regina & Calache, Lucas Daniel Del Rosso & Carpinetti, Luiz Cesar Ribeiro, 2018. "A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI," International Journal of Production Economics, Elsevier, vol. 202(C), pages 182-196.
    16. Zaifang Zhang & Darao Xu & Egon Ostrosi & Hui Cheng, 2020. "Optimization of the Product–Service System Configuration Based on a Multilayer Network," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    17. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    18. Zhibin Wu & Jiuping Xu & Zeshui Xu, 2016. "A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers," Annals of Operations Research, Springer, vol. 247(2), pages 735-757, December.
    19. Jia-Wei Tang & Tsuen-Ho Hsu, 2018. "Utilizing the Hierarchy Structural Fuzzy Analytical Network Process Model to Evaluate Critical Elements of Marketing Strategic Alliance Development in Mobile Telecommunication Industry," Group Decision and Negotiation, Springer, vol. 27(2), pages 251-284, April.
    20. Yong Liu & Ting Zhou & Wei-xue Diao & Jinhong Yi, 2022. "A multivariate minimum cost consensus approach for two-level group decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 839-861, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:554-:d:343728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.