IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i3d10.1007_s10845-020-01692-w.html
   My bibliography  Save this article

Decision rule mining for machining method chains based on rough set theory

Author

Listed:
  • Rui Wang

    (Harbin Institute of Technology)

  • Xiangyu Guo

    (Harbin Institute of Technology)

  • Shisheng Zhong

    (Harbin Institute of Technology)

  • Gaolei Peng

    (Harbin Institute of Technology)

  • Lin Wang

    (Harbin Institute of Technology)

Abstract

Decision rules for machining method chains mined from historical machining documents can help technologists quickly design new machining method chains. However, the main factor that limits the practical application of existing rough set models is that the boundary regions are too large. Therefore, a decomposition-reorganization method (DRM) is proposed to mine rules for machining method chains. First, binary coding is used to decompose the existing machining method chains, and the decision rules for a single machining method are mined based on rough set reduction. Then, machining method chains are obtained by reorganizing the machining methods in accordance with the decision rules. DRM can eliminate the boundary regions without human intervention and recommend machining method chains for all features whose parameters have appeared in historical machining documents. Finally, three types of shell parts are used to verify the effectiveness of DRM.

Suggested Citation

  • Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01692-w
    DOI: 10.1007/s10845-020-01692-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01692-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01692-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Chhim & Ratna Babu Chinnam & Noureddin Sadawi, 2019. "Product design and manufacturing process based ontology for manufacturing knowledge reuse," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 905-916, February.
    2. Yingxin Ye & Tianliang Hu & Yan Yang & Wendan Zhu & Chengrui Zhang, 2020. "A knowledge based intelligent process planning method for controller of computer numerical control machine tools," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1751-1767, October.
    3. Zhigang Jiang & Ya Jiang & Yan Wang & Hua Zhang & Huajun Cao & Guangdong Tian, 2019. "A hybrid approach of rough set and case-based reasoning to remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 19-32, January.
    4. Zaifang Zhang & Danhua Xu & Egon Ostrosi & Li Yu & Beibei Fan, 2019. "A systematic decision-making method for evaluating design alternatives of product service system based on variable precision rough set," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1895-1909, April.
    5. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen-Fu Chien & Hsin-Jung Wu, 2024. "Integrated circuit probe card troubleshooting based on rough set theory for advanced quality control and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 275-287, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    2. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    3. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Tiago Afonso & Anabela C. Alves & Paula Carneiro, 2021. "Lean Thinking, Logistic and Ergonomics: Synergetic Triad to Prepare Shop Floor Work Systems to Face Pandemic Situations," International Journal of Global Business and Competitiveness, Springer, vol. 16(1), pages 62-76, December.
    5. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    6. Xiaoyu Zhan & Delia Mioara Popescu & Valentin Radu, 2020. "Challenges for Romanian Entrepreneurs in Managing Remote Workers," Book chapters-LUMEN Proceedings, in: Marcin Waldemar STANIEWSKI & Valentina VASILE & Adriana Grigorescu (ed.), International Conference Innovative Business Management & Global Entrepreneurship (IBMAGE 2020), edition 1, volume 14, chapter 49, pages 670-687, Editura Lumen.
    7. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    8. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    9. Pompeu Casanovas & Louis de Koker & Mustafa Hashmi, 2022. "Law, Socio-Legal Governance, the Internet of Things, and Industry 4.0: A Middle-Out/Inside-Out Approach," J, MDPI, vol. 5(1), pages 1-28, January.
    10. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    11. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    12. Yongjun Ji & Zuhua Jiang & Xinyu Li & Yongwen Huang & Fuhua Wang, 2023. "A multitask context-aware approach for design lesson-learned knowledge recommendation in collaborative product design," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1615-1637, April.
    13. Peerally, Jahan Ara & Santiago, Fernando & De Fuentes, Claudia & Moghavvemi, Sedigheh, 2022. "Towards a firm-level technological capability framework to endorse and actualize the Fourth Industrial Revolution in developing countries," Research Policy, Elsevier, vol. 51(10).
    14. Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
    15. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    16. Liangjie Xia & Yongwan Bai & Sanjoy Ghose & Juanjuan Qin, 2022. "Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences," Annals of Operations Research, Springer, vol. 310(1), pages 257-292, March.
    17. Szymon Cyfert & Waldemar Glabiszewski & Maciej Zastempowski, 2021. "Impact of Management Tools Supporting Industry 4.0 on the Importance of CSR during COVID-19. Generation Z," Energies, MDPI, vol. 14(6), pages 1-13, March.
    18. John Mugambwa Serumaga-Zake & John Andrew van der Poll, 2021. "Addressing the Impact of Fourth Industrial Revolution on South African Manufacturing Small and Medium Enterprises (SMEs)," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    19. Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 313-327, January.
    20. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01692-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.