IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v247y2016i2d10.1007_s10479-015-1788-6.html
   My bibliography  Save this article

A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers

Author

Listed:
  • Zhibin Wu

    (Sichuan University)

  • Jiuping Xu

    (Sichuan University)

  • Zeshui Xu

    (Sichuan University)

Abstract

In recent years, to adapt rapidly to changing market environments and outdo the competition more companies and organizations have adopted lean management practices. One problem that has arisen in these companies and organizations is the need to develop methods to accurately evaluate the lean practices performance. This study proposes a multiple attribute group decision making (MAGDM) framework to facilitate such evaluations. It deals with the consensus process and selection process for MAGDM problems based on the 2-tuple linguistic computation model. The similarity degree and consensus for the linguistic decision matrix are defined using an Euclidian distance function. An algorithm describing the consensus reaching process is presented and its properties analyzed. The entropy method is generalized to a linguistic setting to derive the importance weights for the attributes. One of the main ideas behind the entropy method is that attributes with quite different values are considered more important and therefore have higher weights. Finally, the developed MAGDM framework is applied to a lean practices evaluation problem for a commercial tobacco company’s logistics distribution centers in China.

Suggested Citation

  • Zhibin Wu & Jiuping Xu & Zeshui Xu, 2016. "A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers," Annals of Operations Research, Springer, vol. 247(2), pages 735-757, December.
  • Handle: RePEc:spr:annopr:v:247:y:2016:i:2:d:10.1007_s10479-015-1788-6
    DOI: 10.1007/s10479-015-1788-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1788-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1788-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. O. Parreiras & P. Ya. Ekel & D. C. Morais, 2012. "Fuzzy Set Based Consensus Schemes for Multicriteria Group Decision making Applied to Strategic Planning," Group Decision and Negotiation, Springer, vol. 21(2), pages 153-183, March.
    2. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi, 2008. "On consistency measures of linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 189(2), pages 430-444, September.
    3. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    4. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    5. Fu-Ling Cai & Xiuwu Liao & Kan-Liang Wang, 2012. "An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities," Annals of Operations Research, Springer, vol. 197(1), pages 87-108, August.
    6. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    7. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
    8. Khanchanapong, Teerasak & Prajogo, Daniel & Sohal, Amrik S. & Cooper, Brian K. & Yeung, Andy C.L. & Cheng, T.C.E., 2014. "The unique and complementary effects of manufacturing technologies and lean practices on manufacturing operational performance," International Journal of Production Economics, Elsevier, vol. 153(C), pages 191-203.
    9. Hong-Bin Yan & Van-Nam Huynh & Yoshiteru Nakamori, 2012. "A group nonadditive multiattribute consumer-oriented Kansei evaluation model with an application to traditional crafts," Annals of Operations Research, Springer, vol. 195(1), pages 325-354, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sengazhani Murugesan Vadivel & Aloysius Henry Sequeira & Robert Rajkumar Sakkariyas & Kirubaharan Boobalan, 2022. "Impact of lean service, workplace environment, and social practices on the operational performance of India post service industry," Annals of Operations Research, Springer, vol. 315(2), pages 2219-2244, August.
    2. Vadivel Sengazhani Murugesan & Sunil Kumar Jauhar & Aloysius Henry Sequeira, 2022. "Applying simulation in lean service to enhance the operational system in Indian postal service industry," Annals of Operations Research, Springer, vol. 315(2), pages 993-1017, August.
    3. Fabiane Letícia Lizarelli & Jiju Antony & José Carlos Toledo, 2020. "Statistical thinking and its impact on operational performance in manufacturing companies: an empirical study," Annals of Operations Research, Springer, vol. 295(2), pages 923-950, December.
    4. Rubén Jesús Pérez-López & Jesús Everardo Olguín Tiznado & María Mojarro Magaña & Claudia Camargo Wilson & Juan Andrés López Barreras & Jorge Luis García-Alcaraz, 2019. "Information Sharing with ICT in Production Systems and Operational Performance," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    5. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    6. Min Jiang & Rui Shen & Zhiqing Meng, 2019. "A Concession Equilibrium Solution Method without Weighted Aggregation Operators for Multiattribute Group Decision-Making Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-10, January.
    7. Sinem Buyuksaatci Kiris & Enes Eryarsoy & Selim Zaim & Dursun Delen, 2023. "An integrated approach for lean production using simulation and data envelopment analysis," Annals of Operations Research, Springer, vol. 320(2), pages 863-886, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    2. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    3. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    4. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    5. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    6. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    7. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    8. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    9. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    10. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    11. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    12. Peng Wu & Jinpei Liu & Ligang Zhou & Huayou Chen, 2022. "An Integrated Group Decision-Making Method with Hesitant Qualitative Information Based on DEA Cross-Efficiency and Priority Aggregation for Evaluating Factors Affecting a Resilient City," Group Decision and Negotiation, Springer, vol. 31(2), pages 293-316, April.
    13. Zhang, Hengjie & Dong, Yucheng & Xiao, Jing & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Fanyong Meng & Qingxian An & Xiaohong Chen, 2016. "A consistency and consensus-based method to group decision making with interval linguistic preference relations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1419-1437, November.
    15. Galo, Nadya Regina & Calache, Lucas Daniel Del Rosso & Carpinetti, Luiz Cesar Ribeiro, 2018. "A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI," International Journal of Production Economics, Elsevier, vol. 202(C), pages 182-196.
    16. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    17. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    18. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    19. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    20. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:247:y:2016:i:2:d:10.1007_s10479-015-1788-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.