IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v26y2017i2d10.1007_s10726-016-9503-9.html
   My bibliography  Save this article

Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights

Author

Listed:
  • Yibin Zhang

    (Shanghai Lixin University of Commerce)

  • Kevin W. Li

    (University of Windsor
    Fuzhou University)

  • Zhou-Jing Wang

    (Zhejiang University of Finance and Economics)

Abstract

This article proposes a goal programming framework for deriving intuitionistic fuzzy weights from intuitionistic preference relations (IPRs). A new multiplicative transitivity is put forward to define consistent IPRs. By analyzing the relationship between intuitionistic fuzzy weights and multiplicative consistency, a transformation formula is introduced to convert normalized intuitionistic fuzzy weights into multiplicative consistent IPRs. By minimizing the absolute deviation between the original judgment and the converted multiplicative consistent IPR, two linear goal programming models are developed to obtain intuitionistic fuzzy weights from IPRs for both individual and group decisions. In the context of multicriteria decision making with a hierarchical structure, a linear program is established to obtain a unified criterion weight vector, which is then used to aggregate local intuitionistic fuzzy weights into global priority weights for final alternative ranking. Two numerical examples are furnished to show the validity and applicability of the proposed models.

Suggested Citation

  • Yibin Zhang & Kevin W. Li & Zhou-Jing Wang, 2017. "Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights," Group Decision and Negotiation, Springer, vol. 26(2), pages 409-436, March.
  • Handle: RePEc:spr:grdene:v:26:y:2017:i:2:d:10.1007_s10726-016-9503-9
    DOI: 10.1007/s10726-016-9503-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-016-9503-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-016-9503-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    2. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    3. Wan, Shu-Ping & Li, Deng-Feng, 2013. "Fuzzy LINMAP approach to heterogeneous MADM considering comparisons of alternatives with hesitation degrees," Omega, Elsevier, vol. 41(6), pages 925-940.
    4. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    5. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    6. Buckley, James J. & Feuring, Thomas & Hayashi, Yoichi, 2001. "Fuzzy hierarchical analysis revisited," European Journal of Operational Research, Elsevier, vol. 129(1), pages 48-64, February.
    7. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    8. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    9. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolu Zhang & Xiaoming Xing, 2017. "Probabilistic Linguistic VIKOR Method to Evaluate Green Supply Chain Initiatives," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    2. Jia-Wei Tang & Tsuen-Ho Hsu, 2018. "Utilizing the Hierarchy Structural Fuzzy Analytical Network Process Model to Evaluate Critical Elements of Marketing Strategic Alliance Development in Mobile Telecommunication Industry," Group Decision and Negotiation, Springer, vol. 27(2), pages 251-284, April.
    3. Muhammad Akram & Maham Arshad, 2019. "A Novel Trapezoidal Bipolar Fuzzy TOPSIS Method for Group Decision-Making," Group Decision and Negotiation, Springer, vol. 28(3), pages 565-584, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    2. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    3. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    4. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    5. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    6. Vassiliki Kazana & Angelos Kazaklis & Dimitrios Raptis & Christos Stamatiou, 2020. "A combined multi-criteria approach to assess forest management sustainability: an application to the forests of Eastern Macedonia & Thrace Region in Greece," Annals of Operations Research, Springer, vol. 294(1), pages 321-343, November.
    7. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    8. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    9. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    10. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    11. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    12. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    13. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    14. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2015. "Generalized analytic network process," European Journal of Operational Research, Elsevier, vol. 244(1), pages 277-288.
    15. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    16. María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
    17. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    18. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.
    19. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    20. Shaher H. Zyoud & Daniela Fuchs-Hanusch, 2019. "Comparison of Several Decision-Making Techniques: A Case of Water Losses Management in Developing Countries," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1551-1578, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:26:y:2017:i:2:d:10.1007_s10726-016-9503-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.