IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p99-d193033.html
   My bibliography  Save this article

Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries

Author

Listed:
  • Wei Sun

    (China Institute of Manufacturing Development, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yufei Hou

    (Business School, Nanjing University of Information Science &Technology, Nanjing 210044, China)

  • Lanjiang Guo

    (Wells Capital Management, Wells Fargo Bank, Boston, MA 02116, USA)

Abstract

In the context of new industrialization, the energy problem being experienced by the manufacturing industry has aroused social concerns. This paper focuses on the energy use of 27 subindustries in China’s manufacturing industry and it develops an energy consumption index for 1994–2015. Subsequently, the method of grey relational analysis is used, with the full period divided according to years in which change points occur. The empirical analysis indicates that the energy consumption indexes generally exhibit a declining trend. Using the grey model (GM (1,1)) to forecast the index indicates a continued downward trend up to 2025 for energy-intensive industries, which is a more optimistic scenario than the trend forecast for the whole manufacturing sector. Thus, these energy-intensive industries do not drag down the performance of the whole manufacturing industry in regard to energy intensity. In future, more attention should be paid to energy-saving efforts by nontraditional high-energy-consuming industries. Although the results show that energy efficiency is improving in China, total annual consumption is rising rapidly. Therefore, the industry needs to continue to strengthen independent innovation and improve the efficiency of new energy use. The Chinese government should formulate feasible long-term plans to encourage enterprises to save energy.

Suggested Citation

  • Wei Sun & Yufei Hou & Lanjiang Guo, 2018. "Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:99-:d:193033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/99/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/99/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    2. Li, Ling, 2018. "China's manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 66-74.
    3. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    4. Yuan, Chaoqing & Liu, Sifeng & Xie, Naiming, 2010. "The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis," Energy, Elsevier, vol. 35(4), pages 1805-1812.
    5. van Asselt, Harro & Biermann, Frank, 2007. "European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures," Energy Policy, Elsevier, vol. 35(1), pages 497-506, January.
    6. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
    7. Shouro Dasgupta & Enrica De Cian & Elena Verdolini, 2016. "The Political Economy of Energy Innovation," Working Papers 2016.35, Fondazione Eni Enrico Mattei.
    8. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Zha, Donglan & Zhou, Dequn & Ding, Ning, 2009. "The contribution degree of sub-sectors to structure effect and intensity effects on industry energy intensity in China from 1993 to 2003," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 895-902, May.
    10. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    11. Sanya Carley & Sara Lawrence, 2014. "Energy-Based Economic Development," Springer Books, Springer, edition 127, number 978-1-4471-6341-1, November.
    12. Jian Hou & Heng Chen & Jianzhong Xu, 2017. "External Knowledge Sourcing and Green Innovation Growth with Environmental and Energy Regulations: Evidence from Manufacturing in China," Sustainability, MDPI, vol. 9(3), pages 1-17, February.
    13. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    14. Xiaoqing Chen & Zaiwu Gong, 2017. "DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation Policy Constraints," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    15. Ayres, Robert U. & Turton, Hal & Casten, Tom, 2007. "Energy efficiency, sustainability and economic growth," Energy, Elsevier, vol. 32(5), pages 634-648.
    16. Menglu Li & Wei Wang & Gejirifu De & Xionghua Ji & Zhongfu Tan, 2018. "Forecasting Carbon Emissions Related to Energy Consumption in Beijing-Tianjin-Hebei Region Based on Grey Prediction Theory and Extreme Learning Machine Optimized by Support Vector Machine Algorithm," Energies, MDPI, vol. 11(9), pages 1-15, September.
    17. Dabbaghiyan, Amir & Fazelpour, Farivar & Abnavi, Mohhamadreza Dehghan & Rosen, Marc A., 2016. "Evaluation of wind energy potential in province of Bushehr, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 455-466.
    18. Shouro Dasgupta, Shouro & De Cian, Enrica & Verdolini, Elena, 2016. "The Political Economy of Energy Innovation," MITP: Mitigation, Innovation and Transformation Pathways 234939, Fondazione Eni Enrico Mattei (FEEM).
    19. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    20. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    21. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    22. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2016. "The political economy of renewable energy policies in Germany and the EU," Utilities Policy, Elsevier, vol. 42(C), pages 33-41.
    23. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    24. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    25. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    26. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    27. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    28. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    29. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    30. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation," Applied Energy, Elsevier, vol. 178(C), pages 223-249.
    31. Thang Trung Nguyen & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects," Energies, MDPI, vol. 11(3), pages 1-30, March.
    32. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    33. Jun Liang & Ting-ting Huang, 2013. "Service-Oriented Manufacturing and the Servicizing Transformation of Chinese Manufacturing Industry," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 1547-1556, Springer.
    34. Arbex, Marcelo & Perobelli, Fernando S., 2010. "Solow meets Leontief: Economic growth and energy consumption," Energy Economics, Elsevier, vol. 32(1), pages 43-53, January.
    35. Fang, Chin-Yi & Hu, Jin-Li & Lou, Tze-Kai, 2013. "Environment-adjusted total-factor energy efficiency of Taiwan's service sectors," Energy Policy, Elsevier, vol. 63(C), pages 1160-1168.
    36. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    37. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    38. Tsani, Stela Z., 2010. "Energy consumption and economic growth: A causality analysis for Greece," Energy Economics, Elsevier, vol. 32(3), pages 582-590, May.
    39. Nasreen, Samia & Anwar, Sofia, 2014. "Causal relationship between trade openness, economic growth and energy consumption: A panel data analysis of Asian countries," Energy Policy, Elsevier, vol. 69(C), pages 82-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    2. Paresh Narayan & Russell Smyth, 2014. "Applied Econometrics and a Decade of Energy Economics Research," Monash Economics Working Papers 21-14, Monash University, Department of Economics.
    3. Ali Raza Cheema & Attiya Yasmin Javid, 2015. "The Relationship between Disaggregate Energy Consumption, Economic Growth and Environment for Asian Developing Economies," PIDE-Working Papers 2015:115, Pakistan Institute of Development Economics.
    4. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    5. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    6. Zhang, Wei & Yang, Shuyun, 2013. "The influence of energy consumption of China on its real GDP from aggregated and disaggregated viewpoints," Energy Policy, Elsevier, vol. 57(C), pages 76-81.
    7. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    8. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    9. Kyophilavong, Phouphet & Shahbaz, Muhammad & Anwar, Sabeen & Masood, Sameen, 2015. "The energy-growth nexus in Thailand: Does trade openness boost up energy consumption?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 265-274.
    10. Zhang, Chuanguo & Xu, Jiao, 2012. "Retesting the causality between energy consumption and GDP in China: Evidence from sectoral and regional analyses using dynamic panel data," Energy Economics, Elsevier, vol. 34(6), pages 1782-1789.
    11. Phung Thanh Binh, 2011. "Energy Consumption and Economic Growth in Vietnam: Threshold Cointegration and Causality Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 1(1), pages 1-17, June.
    12. Paul-Razvan Șerban & Monica Dumitrașcu & Bianca Mitrică & Ines Grigorescu & Irena Mocanu & Gheorghe Kucsicsa & Alexandra Vrînceanu & Cristina Dumitrică, 2020. "The Estimation of Regional Energy Consumption Based on the Energy Consumption Rate at National Level. Case Study: The Romanian Danube Valley," Energies, MDPI, vol. 13(16), pages 1-18, August.
    13. Apergis, Nicholas & Tang, Chor Foon, 2013. "Is the energy-led growth hypothesis valid? New evidence from a sample of 85 countries," Energy Economics, Elsevier, vol. 38(C), pages 24-31.
    14. Lean, Hooi Hooi & Smyth, Russell, 2014. "Disaggregated energy demand by fuel type and economic growth in Malaysia," Applied Energy, Elsevier, vol. 132(C), pages 168-177.
    15. Cosimo Magazzino, 2015. "Energy consumption and GDP in Italy: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 137-153, February.
    16. Zhijun Feng & Wen Zhou & Qian Ming, 2019. "Embodied Energy Flow Patterns of the Internal and External Industries of Manufacturing in China," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    17. Liu, Hong & Wang, Chang & Wen, Fenghua, 2020. "Asymmetric transfer effects among real output, energy consumption, and carbon emissions in China," Energy, Elsevier, vol. 208(C).
    18. Claudiu Cicea & Carmen Nadia Ciocoiu & Corina Marinescu, 2021. "Exploring the Research Regarding Energy–Economic Growth Relationship," Energies, MDPI, vol. 14(9), pages 1-23, May.
    19. Ackah, Ishmael, 2015. "On the relationship between energy consumption, productivity and economic growth: Evidence from Algeria, Ghana, Nigeria and South Africa," MPRA Paper 64887, University Library of Munich, Germany.
    20. Farzana Sharmin & Mohammed Robayet Khan & Mohammed Robayet Khan, 2016. "A Causal Relationship between Energy Consumption, Energy Prices and Economic Growth in Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 477-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:99-:d:193033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.