IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p1-d191900.html
   My bibliography  Save this article

Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis

Author

Listed:
  • Jinzhao Song

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Qing Feng

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Xiaoping Wang

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Hanliang Fu

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Wei Jiang

    (Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA)

  • Baiyu Chen

    (College of Engineering, University of California Berkeley, Berkeley, CA 94720, USA)

Abstract

Urban agglomeration, an established urban spatial pattern, contributes to the spatial association and dependence of city-level CO 2 emission distribution while boosting regional economic growth. Exploring this spatial association and dependence is conducive to the implementation of effective and coordinated policies for regional level CO 2 reduction. This study calculated CO 2 emissions from 2005–2016 in the Chengdu-Chongqing urban agglomeration with the IPAT model, and empirically explored the spatial structure pattern and association effect of CO 2 across the area leveraged by the social network analysis. The findings revealed the following: (1) The spatial structure of CO 2 emission in the area is a complex network pattern, and in the sample period, the CO 2 emission association relations increased steadily and the network stabilization remains strengthened; (2) the centrality of the cities in this area can be categorized into three classes: Chengdu and Chongqing are defined as the first class, the second class covers Deyang, Mianyang, Yibin, and Nanchong, and the third class includes Zigong, Suining, Meishan, and Guangan—the number of cities in this class is on the rise; (3) the network is divided into four subgroups: the area around Chengdu, south Sichuan, northeast Sichuan, and west Chongqing where the spillover effect of CO 2 is greatest; and (4) the higher density of the global network of CO 2 emission considerably reduces regional emission intensity and narrows the differences among regions. Individual networks with higher centrality are also found to have lower emission intensity.

Suggested Citation

  • Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:1-:d:191900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    2. Manchin, Miriam & Orazbayev, Sultan, 2018. "Social networks and the intention to migrate," World Development, Elsevier, vol. 109(C), pages 360-374.
    3. Murat Celik, H. & Guldmann, Jean-Michel, 2007. "Spatial interaction modeling of interregional commodity flows," Socio-Economic Planning Sciences, Elsevier, vol. 41(2), pages 147-162, June.
    4. Hanliang Fu & Zhaoxing Li & Zhijian Liu & Zelin Wang, 2018. "Research on Big Data Digging of Hot Topics about Recycled Water Use on Micro-Blog Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    5. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    6. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    7. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    8. Pingxing Li & Wei Sun, 2018. "Temporal Evolution and Influencing Factors of Energy Consumption and Related Carbon Emissions from the Perspective of Industrialization and Urbanization in Shanghai, China," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    9. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    10. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    11. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    12. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    13. Zhou, Ya & Shan, Yuli & Liu, Guosheng & Guan, Dabo, 2018. "Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings," Applied Energy, Elsevier, vol. 228(C), pages 1683-1692.
    14. Wei Liu & Jie Xu & Jie Li, 2018. "The Influence of Poverty Alleviation Resettlement on Rural Household Livelihood Vulnerability in the Western Mountainous Areas, China," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    15. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    16. Yong Wang & Han Zhao & Fumei Duan & Ying Wang, 2018. "Initial Provincial Allocation and Equity Evaluation of China’s Carbon Emission Rights—Based on the Improved TOPSIS Method," Sustainability, MDPI, vol. 10(4), pages 1-27, March.
    17. Matsumoto, Hidenobu, 2004. "International urban systems and air passenger and cargo flows: some calculations," Journal of Air Transport Management, Elsevier, vol. 10(4), pages 239-247.
    18. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sicheng Wang & Pingjun Sun & Feng Sun & Shengnan Jiang & Zhaomin Zhang & Guoen Wei, 2021. "The Direct and Spillover Effect of Multi-Dimensional Urbanization on PM 2.5 Concentrations: A Case Study from the Chengdu-Chongqing Urban Agglomeration in China," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    2. Yiyang Sun & Guolin Hou, 2021. "Analysis on the Spatial-Temporal Evolution Characteristics and Spatial Network Structure of Tourism Eco-Efficiency in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(5), pages 1-29, March.
    3. Hongkuan Zang & Lirong Zhang & Ye Xu & Wei Li, 2020. "Dynamic Input–Output Analysis of a Carbon Emission System at the Aggregated and Disaggregated Levels: A Case Study in the Northeast Industrial District," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    4. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
    5. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Shuxia Yang & Di Zhang & Dongyan Li, 2019. "A Calculation Model for CO 2 Emission Reduction of Energy Internet: A Case Study of Yanqing," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
    7. Baiyu Chen & Yi Kou & Daniel Zhao & Fang Wu & Shaoxun Liu & Alvin Chia & Liping Wang, 2020. "Calculations on stopping time and return period," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 537-550, March.
    8. Xin Li & Chunlei Huang & Shaoguo Zhan & Yunxi Wu, 2022. "The Carbon Emission Reduction Effect of City Cluster—Evidence from the Yangtze River Economic Belt in China," Energies, MDPI, vol. 15(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guancen Wu & Jing Li & Dan Chong & Xing Niu, 2021. "Analysis on the Housing Price Relationship Network of Large and Medium-Sized Cities in China Based on Gravity Model," Sustainability, MDPI, vol. 13(7), pages 1-20, April.
    2. Shanshan Wang & Tianhao Zhao & Haitao Zheng & Jie Hu, 2017. "The STIRPAT Analysis on Carbon Emission in Chinese Cities: An Asymmetric Laplace Distribution Mixture Model," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    3. Yi Gao & Zhiguo Li & Kashif Khan, 2019. "Effect of Cognitive Variables and Emotional Variables on Urban Residents’ Recycled Water Reuse Behavior," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    4. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    5. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    6. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    7. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    8. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    9. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    10. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    11. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    12. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    13. Liu, Qianqian & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Kong, Yunlong, 2019. "Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives," Applied Energy, Elsevier, vol. 236(C), pages 163-171.
    14. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    15. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    16. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).
    17. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    18. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    19. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    20. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:1-:d:191900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.