IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2854-d163261.html
   My bibliography  Save this article

Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation

Author

Listed:
  • Edward S. Spang

    (Food Science & Technology, University of California, Davis, CA 95616, USA)

  • Bret D. Stevens

    (Agricultural & Resource Economics, University of California, Davis, CA 95616, USA)

Abstract

Given the high proportion of water consumption for agriculture, as well as the relatively common occurrence of crop losses in the field, we estimate the amount of water embedded in crops left on the farm. We are particularly interested in understanding losses associated with fruits and vegetables, having a higher level of harvesting selectivity and perishability (and thus, losses) than grain crops. We further refined the study to focus on potatoes, as they represent the largest acreage under cultivation of all fruit and vegetable crops in the U.S. We attempt to get the most complete understanding of pre-harvest and harvest loss data for potatoes by leveraging three centralized data sets collected and managed by the United States Department of Agriculture (USDA). By integrating these three distinct data sets for the five-year period 2012–2016, we are able to estimate water consumption for potato cultivation for total in-field losses by production stage and driver of loss for seven major potato-producing states (representing 77% of total U.S. potato production). Our results suggest that 3.6%–17.9% of potatoes are lost in the field with a total estimated blue water footprint of approximately 84.6 million cubic meters. We also find that the leading driver for crop loss for in-field potato production is harvest sorting and grading, accounting for 84% of total lost production at the farm. We conclude with a discussion of opportunities for improved national level data collection to provide a better understanding of in-field crop losses over time and the resource footprints of these losses.

Suggested Citation

  • Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2854-:d:163261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cazcarro, I. & Hoekstra, A.Y. & Sánchez Chóliz, J., 2014. "The water footprint of tourism in Spain," Tourism Management, Elsevier, vol. 40(C), pages 90-101.
    2. Kevin D Hall & Juen Guo & Michael Dore & Carson C Chow, 2009. "The Progressive Increase of Food Waste in America and Its Environmental Impact," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-6, November.
    3. Marc F. Bellemare & Metin Çakir & Hikaru Hanawa Peterson & Lindsey Novak & Jeta Rudi, 2017. "On the Measurement of Food Waste," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(5), pages 1148-1158.
    4. Marissa H. Linneman & Arjen Y. Hoekstra & Wouter Berkhout, 2015. "Ranking Water Transparency of Dutch Stock-Listed Companies," Sustainability, MDPI, vol. 7(4), pages 1-19, April.
    5. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    6. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alissa Kendall & Edward S. Spang, 2020. "The role of industrial ecology in food and agriculture's adaptation to climate change," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 313-317, April.
    2. Daniel Durán-Sandoval & Gemma Durán-Romero & Francesca Uleri, 2023. "How Much Food Loss and Waste Do Countries with Problems with Food Security Generate?," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
    3. Nino Adamashvili & Filomena Chiara & Mariantonietta Fiore, 2019. "Food Loss and Waste, a global responsibility?!," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 825-846.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    3. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    4. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    5. Lopez Barrera, Emiliano & Hertel, Thomas, 2021. "Global food waste across the income spectrum: Implications for food prices, production and resource use," Food Policy, Elsevier, vol. 98(C).
    6. Richards, Timothy J. & Hamilton, Stephen F., 2018. "Food waste in the sharing economy," Food Policy, Elsevier, vol. 75(C), pages 109-123.
    7. A. Ercin & Maite Aldaya & Arjen Hoekstra, 2011. "Corporate Water Footprint Accounting and Impact Assessment: The Case of the Water Footprint of a Sugar-Containing Carbonated Beverage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 721-741, January.
    8. Yen, Jeff & Bras, Bert, 2012. "A system model for assessing vehicle use-phase water consumption in urban mobility networks," Energy Policy, Elsevier, vol. 51(C), pages 474-492.
    9. Min, Shi & Wang, Xiaobing & Yu, Xiaohua, 2021. "Does dietary knowledge affect household food waste in the developing economy of China?," Food Policy, Elsevier, vol. 98(C).
    10. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    11. Tatjana Tokareva & Aija Eglite & Dace Kaufmane, 2017. "Sustainable Production And Use Of Resources Versus Food Wasting," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 11(1), pages 458-465.
    12. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    13. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    14. Brenna Ellison & Mary K Muth & Elise Golan, 2019. "Opportunities and Challenges in Conducting Economic Research on Food Loss and Waste," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 1-19, March.
    15. Yang Yu & Edward C. Jaenicke, 2020. "Estimating Food Waste as Household Production Inefficiency," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 525-547, March.
    16. Cicatiello, Clara & Franco, Silvio & Pancino, Barbara & Blasi, Emanuele, 2016. "The value of food waste: An exploratory study on retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 30(C), pages 96-104.
    17. Jayson L. Lusk & Brenna Ellison, 2020. "Economics of household food waste," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(4), pages 379-386, December.
    18. Fabio Iraldo & Benedetta Nucci, 2016. "Proactive environmental management in hotels: What difference does it make?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(2), pages 81-106.
    19. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    20. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2854-:d:163261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.