IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v4y2015i2p413-435d49603.html
   My bibliography  Save this article

Assessing Site Availability of Aspen and Northern Hardwoods for Potential Feedstock Development in Michigan: A Case Study

Author

Listed:
  • Sara Alian

    (School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA)

  • Ann Maclean

    (School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA)

Abstract

The importance of wood and wood byproducts as biomass feedstocks is of increasing interest as a source of ethanol and electricity. Second generation woody feedstock sources in Michigan, e.g., hybrid poplar and hybrid willow ( Populus spp.), and native forests, particularly aspen and northern hardwoods, are a potential source of woody biomass for these uses. This study provides a geographic information system (GIS) framework for assessing the current spatial extent of aspen and northern hardwoods) and their proximity to roads. Additionally, the potential for expanding the area of these feedstock sources based on pre-European settlement vegetation cover is assessed. Utilizing GIS technology to compile, edit and analyze available geospatial data (e.g., present day and pre-European settlement land use/cover, soils, road infrastructure, and land ownership) for counties located in the eastern half of the Upper Peninsula and northern half of the Lower Peninsula of Michigan provides a robust framework for various management scenarios to be evaluated in a cost effective manner and foster better decision making.

Suggested Citation

  • Sara Alian & Ann Maclean, 2015. "Assessing Site Availability of Aspen and Northern Hardwoods for Potential Feedstock Development in Michigan: A Case Study," Land, MDPI, vol. 4(2), pages 1-23, May.
  • Handle: RePEc:gam:jlands:v:4:y:2015:i:2:p:413-435:d:49603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/4/2/413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/4/2/413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. Torre Ugarte, Daniel de la & Walsh, Marie E. & Shapouri, Hosein & Slinsky, Stephen P., 2003. "The Economic Impacts of Bioenergy Crop Production on U.S. Crop Production," Agricultural Economic Reports 33997, United States Department of Agriculture, Economic Research Service.
    3. Calvert, K., 2011. "Geomatics and bioenergy feasibility assessments: Taking stock and looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1117-1124, February.
    4. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    5. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    2. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Hadian & Kaveh Madani, 2013. "The Water Demand of Energy: Implications for Sustainable Energy Policy Development," Sustainability, MDPI, vol. 5(11), pages 1-14, November.
    2. Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
    3. Vukašinović, Vladimir & Gordić, Dušan, 2016. "Optimization and GIS-based combined approach for the determination of the most cost-effective investments in biomass sector," Applied Energy, Elsevier, vol. 178(C), pages 250-259.
    4. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    5. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    7. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    8. Doering, Otto C., III, 2005. "Agricultural/Renewable Contributions to U.S. Electricity Usage," Energy from Agriculture: New Technologies, Innovative Programs and Success Stories, December 14-15, 2005, St. Louis, Missouri 7626, Farm Foundation.
    9. Denholm, Paul, 2006. "Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage," Renewable Energy, Elsevier, vol. 31(9), pages 1355-1370.
    10. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    11. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    13. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    14. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    15. Emmanuel Garbolino & Warren Daniel & Guillermo Hinojos Mendoza, 2018. "Expected Global Warming Impacts on the Spatial Distribution and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France," Energies, MDPI, vol. 11(12), pages 1-17, December.
    16. Viana, H. & Aranha, J. & Lopes, D. & Cohen, Warren B., 2012. "Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models," Ecological Modelling, Elsevier, vol. 226(C), pages 22-35.
    17. Chunzeng Wang & Jason Johnston & David Vail & Jared Dickinson & David Putnam, 2015. "High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA," Land, MDPI, vol. 4(1), pages 1-24, March.
    18. Ahmad Fazlizan & Wen Tong Chong & Sook Yee Yip & Wooi Ping Hew & Sin Chew Poh, 2015. "Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 8(7), pages 1-19, June.
    19. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    20. Ragan, Holly R. & Kenkel, Philip L., 2007. "The Impact of Biofuel Production on Crop Production in the Southern Plains," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34883, Southern Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:4:y:2015:i:2:p:413-435:d:49603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.