IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p1621-d1037479.html
   My bibliography  Save this article

The Heterogeneous Effects of Formal and Informal Environmental Regulation on Green Technology Innovation—An Empirical Study of 284 Cities in China

Author

Listed:
  • Chuantang Ren

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Tao Wang

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Yue Wang

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Yizhen Zhang

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Luwei Wang

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

Abstract

Promoting green technology innovation (GTI) through environmental regulation is a key measure in reducing the severity of environmental problems. However, the effects of formal environmental regulation (FER) and informal environmental regulation (IER) on GTI have not been clarified. Through theoretical analysis, this paper analyzes the effects of FER and IER on GTI based on OLS and GTWR models. The results show the following: (1) In all Chinese cities, both FER and IER have had a positive impact on GTI. The impact of FER has been much stronger than that of IER. They show a linkage effect, and their interaction (TER) has had a positive impact on GTI. (2) In terms of spatial heterogeneity, the impact of FER, IER, and TER on GTI has decreased across the east–west gradient and has been supplemented by a core–periphery structure. (3) In terms of urban heterogeneity, the impact of FER, IER, and TER has decreased with the size of the city. This study has the potential to strengthen the effect of environmental regulation on GTI. It can provide a decision-making reference for cities to coordinate FER and IER strategies, and provides evidence for adopting regionally differentiated environmental regulation strategies.

Suggested Citation

  • Chuantang Ren & Tao Wang & Yue Wang & Yizhen Zhang & Luwei Wang, 2023. "The Heterogeneous Effects of Formal and Informal Environmental Regulation on Green Technology Innovation—An Empirical Study of 284 Cities in China," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1621-:d:1037479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/1621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/1621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    2. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    3. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Wagner, Marcus, 2007. "On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms," Research Policy, Elsevier, vol. 36(10), pages 1587-1602, December.
    6. Marius Ley, Tobias Stucki, and Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
    8. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    9. Yan Li & Yi Shi, 2022. "Dynamic Game Analysis of Enterprise Green Technology Innovation Ecosystem under Double Environmental Regulation," IJERPH, MDPI, vol. 19(17), pages 1-33, September.
    10. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.
    11. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    12. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    13. Xingle Long & Chuanwang Sun & Chao Wu & Bin Chen & Kofi Agyenim Boateng, 2020. "Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1243-1260, October.
    14. Chintrakarn, Pandej, 2008. "Environmental regulation and U.S. states' technical inefficiency," Economics Letters, Elsevier, vol. 100(3), pages 363-365, September.
    15. Bei Xiong & Ruimei Wang, 2020. "Effect of Environmental Regulation on Industrial Solid Waste Pollution in China: From the Perspective of Formal Environmental Regulation and Informal Environmental Regulation," IJERPH, MDPI, vol. 17(21), pages 1-17, October.
    16. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    17. Ernest Migu�lez & Rosina Moreno, 2013. "Research Networks and Inventors' Mobility as Drivers of Innovation: Evidence from Europe," Regional Studies, Taylor & Francis Journals, vol. 47(10), pages 1668-1685, November.
    18. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869, December.
    19. Yiqun Hu & Xiong Dai & Li Zhao, 2022. "Digital Finance, Environmental Regulation, and Green Technology Innovation: An Empirical Study of 278 Cities in China," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    20. Kathuria, Vinish, 2007. "Informal regulation of pollution in a developing country: Evidence from India," Ecological Economics, Elsevier, vol. 63(2-3), pages 403-417, August.
    21. Min Wang & Youshi He & Jianya Zhou & Kai Ren, 2022. "Evaluating the Effect of Chinese Environmental Regulation on Corporate Sustainability Performance: The Mediating Role of Green Technology Innovation," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
    22. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    23. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    24. Zvi Griliches, 1998. "R&D and Productivity: The Econometric Evidence," NBER Books, National Bureau of Economic Research, Inc, number gril98-1, March.
    25. Jinyong Chen & Xiaochi Wang & Wan Shen & Yanyan Tan & Liviu Marian Matac & Sarminah Samad, 2022. "Environmental Uncertainty, Environmental Regulation and Enterprises’ Green Technological Innovation," IJERPH, MDPI, vol. 19(16), pages 1-28, August.
    26. Samuel Wicki & Erik G. Hansen, 2019. "Green technology innovation: Anatomy of exploration processes from a learning perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 970-988, September.
    27. Pargal, Sheoli & Wheeler, David, 1996. "Informal Regulation of Industrial Pollution in Developing Countries: Evidence from Indonesia," Journal of Political Economy, University of Chicago Press, vol. 104(6), pages 1314-1327, December.
    28. Kneller, Richard & Manderson, Edward, 2012. "Environmental regulations and innovation activity in UK manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(2), pages 211-235.
    29. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    30. Helena Forsman, 2013. "Environmental Innovations as a Source of Competitive Advantage or Vice Versa?," Business Strategy and the Environment, Wiley Blackwell, vol. 22(5), pages 306-320, July.
    31. Yuhua Ma & Tong Lin & Qifang Xiao, 2022. "The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    2. Xingshuai Wang & Ehsan Elahi & Lianggui Zhang, 2022. "Mandatory Environmental Regulation and Green Technology Innovation: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    3. Huang, Youxing & Xu, Qi & Zhao, Yanping, 2021. "Short-run pain, long-run gain: Desulfurization investment and productivity," Energy Economics, Elsevier, vol. 102(C).
    4. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    5. Huang, Hongyun & Mbanyele, William & Wang, Fengrong & Song, Malin & Wang, Yuzhang, 2022. "Climbing the quality ladder of green innovation: Does green finance matter?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    7. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    8. Yanwei Lyu & Jinning Zhang & Fei Yang & Di Wu, 2022. "The “Local Neighborhood” Effect of Environmental Regulation on Green Innovation Efficiency: Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    9. Jianshi Wang & Yu Cheng & Chengxin Wang, 2022. "Environmental Regulation, Scientific and Technological Innovation, and Industrial Structure Upgrading in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    10. Mian Yang & Yining Yuan & Fuxia Yang & Dalia Patino-Echeverri, 2021. "Effects of environmental regulation on firm entry and exit and China’s industrial productivity: a new perspective on the Porter Hypothesis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 915-944, October.
    11. Zhou, Kuo & Luo, Haotian & Qu, Zhi, 2023. "What can the environmental rule of law do for environmental innovation? Evidence from environmental tribunals in China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    12. Yuhua Ma & Tong Lin & Qifang Xiao, 2022. "The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    13. Huang, Jingchang & Zhao, Jing & Cao, June, 2021. "Environmental regulation and corporate R&D investment—evidence from a quasi-natural experiment," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 154-174.
    14. Xinyu Wang & Yuanze Chai & Wensen Wu & Adnan Khurshid, 2023. "The Empirical Analysis of Environmental Regulation’s Spatial Spillover Effects on Green Technology Innovation in China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    15. Erik Hille & Patrick Möbius, 2019. "Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1315-1355, August.
    16. Zijing Cao & Huiming Zhang & Zixuan Hang & Dequn Zhou & Buhang Jing, 2022. "Does the Responsibility System for Environmental Protection Targets Enhance Corporate High-Quality Development in China?," Energies, MDPI, vol. 15(10), pages 1-18, May.
    17. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.
    18. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    20. Siedschlag, Iulia & Yan, Weijie, 2023. "Do green investments improve firm performance? Empirical evidence from Ireland," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1621-:d:1037479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.