IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i20p13405-d944707.html
   My bibliography  Save this article

Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China

Author

Listed:
  • Shaoqi Sun

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Space Planning and Large Data Research Center of One Belt and One Road, Northwest University, Xi’an 710127, China)

  • Yuanli Xie

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

  • Yunmei Li

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Kansheng Yuan

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Space Planning and Large Data Research Center of One Belt and One Road, Northwest University, Xi’an 710127, China)

  • Lifa Hu

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

Abstract

Northwest region is the main energy supply and consumption area in China. Scientifically estimating carbon emissions (CE) at the county level and analyzing the spatial-temporal characteristics and influencing factors of CE in a long time series are of great significance for formulating targeted CE reduction plans. In this paper, Landscan data are used to assist NPP-VIIRS-like data to simulate the CE from 2001 to 2019. Spatial-temporal heterogeneity of CE was analyzed by using a two-stage nested Theil index and geographically and temporally weighted regression model (GTWR). The CE in northwest China at the county increases yearly while the growth rate slows down from 2001 to 2019. The spatial pattern forms a circle expansion centered on the high-value areas represented by the provincial capital, which is also obvious at the border between Shaanxi and Ningxia. Axial expansion along the Hexi Corridor is conspicuous. The spatial pattern of CE conforms to the Pareto principle; the spatial correlation of CE in northwest counties is increasing year by year, and the high-high agglomeration areas are expanding continuously. It is an obvious high carbon spillover effect. Restricted by the ecological environment, the southwest of Qinghai and the Qinling-Daba Mountain area are stable low-low agglomeration areas. The spatial pattern of CE in northwest China shows remarkable spatial heterogeneity. The difference within regions is greater than that between regions. The “convergence within groups and divergence between groups” changing trend is obvious. According to the five-year socioeconomic indicators, the economic scale (GDP), population scale (POP), and urbanization level (UR) are the main influencing factors. The direction and intensity of the effect have changed in time and space. The same factor shows different action intensities in different regions.

Suggested Citation

  • Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13405-:d:944707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/20/13405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/20/13405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    2. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    3. LiJuan Si & JiaLu Wang & ShuRan Yang & Ye Yang & Jing Zhang & Wei Zhang, 2021. "Urban Green Development towards Sustainability in Northwest China: Efficiency Assessment, Spatial-Temporal Differentiation Characters, and Influencing Factors," Complexity, Hindawi, vol. 2021, pages 1-19, March.
    4. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    5. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    6. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    7. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    8. Chen Li & Le Zhang & Qinyi Gu & Jia Guo & Yi Huang, 2022. "Spatio-Temporal Differentiation Characteristics and Urbanization Factors of Urban Household Carbon Emissions in China," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    9. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    10. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    11. Wu, Dengsheng & Yuan, Lili & Li, Ruoyun & Li, Jianping, 2018. "Decomposing inequality in research funding by university-institute sub-group: A three-stage nested Theil index," Journal of Informetrics, Elsevier, vol. 12(4), pages 1312-1326.
    12. Liang, Xiaoying & Min Fan, & Xiao, Yuting & Yao, Jing, 2022. "Temporal-spatial characteristics of energy-based carbon dioxide emissions and driving factors during 2004–2019, China," Energy, Elsevier, vol. 261(PA).
    13. Jiaxing Pang & Hengji Li & Chengpeng Lu & Chenyu Lu & Xingpeng Chen, 2020. "Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China," IJERPH, MDPI, vol. 17(20), pages 1-14, October.
    14. Sutton, Paul C. & Costanza, Robert, 2002. "Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation," Ecological Economics, Elsevier, vol. 41(3), pages 509-527, June.
    15. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    16. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Volodzkiene & Dalia Streimikiene, 2023. "Energy Inequality Indicators: A Comprehensive Review for Exploring Ways to Reduce Inequality," Energies, MDPI, vol. 16(16), pages 1-28, August.
    2. Yaohui Liu & Wenyi Liu & Peiyuan Qiu & Jie Zhou & Linke Pang, 2023. "Spatiotemporal Evolution and Correlation Analysis of Carbon Emissions in the Nine Provinces along the Yellow River since the 21st Century Using Nighttime Light Data," Land, MDPI, vol. 12(7), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    2. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    3. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    4. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    5. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    6. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    7. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    8. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    9. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    10. Xiaohan Wang & Minqiang Zhou & Yining Xia & Junshen Zhang & Jianting Sun & Bin Zhang, 2024. "Evolution of China’s Coastal Economy since the Belt and Road Initiative Based on Nighttime Light Imagery," Sustainability, MDPI, vol. 16(3), pages 1-17, February.
    11. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "Analysis of the Agricultural Economy and Agricultural Pollution Using the Decoupling Index in Chengdu, China," IJERPH, MDPI, vol. 16(21), pages 1-11, October.
    12. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    13. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    14. Yang, Xue & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Zou, Yafeng, 2016. "Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China," Applied Energy, Elsevier, vol. 184(C), pages 714-726.
    15. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    16. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    17. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    18. Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    19. Weiping Zhang & Peiji Shi & Wanzhuang Huang, 2022. "Research on Spatial and Temporal Pattern Evolution and Driving Factors of County Carbon Emissions in Underdeveloped Regions: Gansu Province of Western China as an Example," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    20. Kacprzyk, Andrzej & Kuchta, Zbigniew, 2020. "Shining a new light on the environmental Kuznets curve for CO2 emissions," Energy Economics, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13405-:d:944707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.