IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i20p7541-d429767.html
   My bibliography  Save this article

Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China

Author

Listed:
  • Jiaxing Pang

    (College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China
    Institute of County Economic Development, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China)

  • Hengji Li

    (College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China)

  • Chengpeng Lu

    (Institute of County Economic Development, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China)

  • Chenyu Lu

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Xingpeng Chen

    (College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China
    Institute of County Economic Development, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China)

Abstract

The study of the carbon emission intensity of agricultural production is of great significance for the formulation of a rational agricultural carbon reduction policy. This paper examines the regional differences, spatial–temporal pattern and dynamic evolution of the carbon emission intensity of agriculture production from 1991 to 2018 through the Theil index and spatial data analysis. The results are shown as follows: The overall differences in carbon emission intensity of agriculture production presents a slightly enlarging trend, while the inter-regional differences in carbon emissions intensity is decreasing, but the intra-regional difference of carbon emissions intensity presented an expanding trend. The difference in carbon emission intensity between the eastern and central regions is not obvious, and the difference in carbon emission intensity in the western region shows a fluctuating and increasing trend. The overall differences caused by intra-regional differences; the average annual contribution of intra-regional differences is 67.84%, of which the average annual contribution of western region differences is 64.24%. The carbon emission intensity of agricultural production in China shows a downward trend, with provinces with high carbon emission intensity remaining stable, while provinces with low intensity are expanding. The Global Moran’s I index indicates that China’s carbon emission intensity of agricultural production shows a clear trend of spatial aggregation. The agglomeration trend of high agricultural carbon emission remains stable, and the overall pattern of agricultural carbon emission intensity shows a pattern of increasing differentiation from east to west.

Suggested Citation

  • Jiaxing Pang & Hengji Li & Chengpeng Lu & Chenyu Lu & Xingpeng Chen, 2020. "Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China," IJERPH, MDPI, vol. 17(20), pages 1-14, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7541-:d:429767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/20/7541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/20/7541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    2. Getis, Arthur, 2007. "Reflections on spatial autocorrelation," Regional Science and Urban Economics, Elsevier, vol. 37(4), pages 491-496, July.
    3. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    4. Jin Yang & Yunquan Zhang & Lisha Luo & Runtang Meng & Chuanhua Yu, 2018. "Global Mortality Burden of Cirrhosis and Liver Cancer Attributable to Injection Drug Use, 1990–2016: An Age-Period-Cohort and Spatial Autocorrelation Analysis," IJERPH, MDPI, vol. 15(1), pages 1-16, January.
    5. Chuanhe Xiong & Shuang Chen & Liting Xu, 2020. "Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1401-1416, September.
    6. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    7. Yihui Chen & Minjie Li & Kai Su & Xiaoyong Li, 2019. "Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China," Energies, MDPI, vol. 12(16), pages 1-23, August.
    8. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    9. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    10. repec:dau:papers:123456789/13362 is not listed on IDEAS
    11. Christian de Perthuis & Dominic Moran & Erda Lin & Guodong Han & Liping Guo & Xiaotang Ju & Eli Saetnan & Pete Smith & Dali Rani Nayak & Frank Koslowski & Wen Wang, 2014. "Greenhouse gas mitigation in Chinese agriculture: Distinguishing technical and economic potentials," Post-Print hal-01504956, HAL.
    12. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xidong Zhang & Juan Zhang & Chengbo Yang, 2023. "Spatio-Temporal Evolution of Agricultural Carbon Emissions in China, 2000–2020," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Qian Wang & Shiwei Chen & Tiantian Qu, 2024. "Differences in Carbon Intensity of Energy Consumption and Influential Factors between Yangtze River Economic Belt and Yellow River Basin," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    3. Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    4. Haoyue Wu & Wanqi Yan & Xiangjiang Zheng & Lei Zhou & Jinshan Ma & Lu Liu & Yue Meng, 2023. "Carbon-Emission Density of Crop Production in China: Spatiotemporal Characteristics, Regional Disparities, and Convergence," Agriculture, MDPI, vol. 13(5), pages 1-17, April.
    5. Ying Wang & Juan Yang & Caiquan Duan, 2023. "Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    6. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    7. Xianen Wang & Baoyang Qin & Hanning Wang & Xize Dong & Haiyan Duan, 2022. "Carbon Mitigation Pathways of Urban Transportation under Cold Climatic Conditions," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    8. Li, Shuoshuo & Liu, Yaobin & Elahi, Ehsan & Meng, Xiao & Deng, Weifeng, 2023. "A new type of urbanization policy and transition of low-carbon society: A "local- neighborhood" perspective," Land Use Policy, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuting Liu & Junsong Jia & Hanzhi Huang & Dilan Chen & Yexi Zhong & Yangming Zhou, 2023. "China’s CO 2 Emissions: A Thorough Analysis of Spatiotemporal Characteristics and Sustainable Policy from the Agricultural Land-Use Perspective during 1995–2020," Land, MDPI, vol. 12(6), pages 1-20, June.
    2. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    3. Jiaxing Pang & Xiang Li & Xue Li & Xingpeng Chen & Huiyu Wang, 2021. "Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data," Energies, MDPI, vol. 14(11), pages 1-11, May.
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    6. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    7. Yihui Chen & Minjie Li & Kai Su & Xiaoyong Li, 2019. "Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China," Energies, MDPI, vol. 12(16), pages 1-23, August.
    8. Feng Dong & Jingyun Li & Yue-Jun Zhang & Ying Wang, 2018. "Drivers Analysis of CO 2 Emissions from the Perspective of Carbon Density: The Case of Shandong Province, China," IJERPH, MDPI, vol. 15(8), pages 1-24, August.
    9. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    10. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    11. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    12. Jinyu Han & Jiansheng Qu & Dai Wang & Tek Narayan Maraseni, 2023. "Accounting for and Comparison of Greenhouse Gas (GHG) Emissions between Crop and Livestock Sectors in China," Land, MDPI, vol. 12(9), pages 1-18, September.
    13. Kim, Daesoo & Stoddart, Nick & Rotz, C. Alan & Veltman, Karin & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Aguirre-Villegas, Horacio , 2019. "Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes," Agricultural Systems, Elsevier, vol. 176(C).
    14. Hongpeng Guo & Sidong Xie & Chulin Pan, 2021. "The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    15. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    16. Safa Baccour & Jose Albiac & Taher Kahil, 2021. "Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    17. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    18. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    19. Zhang, Yuquan W. & Beach, Robert H. & Cai, Yongxia, 2013. "China’s Agriculture under Urbanization: A Partial Equilibrium Analysis," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150782, Agricultural and Applied Economics Association.
    20. Jingwen Lu & Lihua Dai, 2023. "Examining the Threshold Effect of Environmental Regulation: The Impact of Agricultural Product Trade Openness on Agricultural Carbon Emissions," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7541-:d:429767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.