IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12837-d935414.html
   My bibliography  Save this article

The Relationship between Environmental Regulation, Industrial Transformation Change and Urban Low-Carbon Development: Evidence from 282 Cities in China

Author

Listed:
  • Kun Chen

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430700, China)

  • Yinrong Chen

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430700, China)

  • Qingying Zhu

    (School of Public Administration, South China Agricultural University, Guangzhou 510642, China)

  • Min Liu

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430700, China)

Abstract

Environmental regulation (ER) plays an important role in urban low-carbon development (ULCD). First of all, we evaluate the ULCD level of 282 cities in China from 2005 to 2020 by constructing an index group and entropy method. Two panel models are then used to test the spillover effects and threshold effects of ER and industrial structure on ULCD. The results show that the ULCD level of most cities is still in grade III (0.27–0.38) or IV (0.38–0.49), and the level of central-western cities is generally lower than that of eastern cities. Furthermore, the spillover effect of ER and industrial structure upgrading (UIS) on ULCD is positive in eastern cities (0.038) but opposite in central or western cities (−0.024). Further results show that the positive effects of optimization of industrial structure (OIS) and UIS are gradually increasing with the improvement of ER. However, the positive effects are more beneficial to the eastern cities. Therefore, the conclusions of this study can provide a decision-making reference for local government to comprehensively formulate environmental and industrial policies to enhance the low-carbon development of cities.

Suggested Citation

  • Kun Chen & Yinrong Chen & Qingying Zhu & Min Liu, 2022. "The Relationship between Environmental Regulation, Industrial Transformation Change and Urban Low-Carbon Development: Evidence from 282 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12837-:d:935414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying QU & Yue LIU, 2017. "Evaluating the low-carbon development of urban China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 939-953, June.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Neves, Sónia Almeida & Marques, António Cardoso & Patrício, Margarida, 2020. "Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 114-125.
    4. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    5. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    6. repec:clg:wpaper:2008-02 is not listed on IDEAS
    7. Zhao, Xiaomeng & Liu, Chuanjiang & Sun, Chuanwang & Yang, Mian, 2020. "Does stringent environmental regulation lead to a carbon haven effect? Evidence from carbon-intensive industries in China," Energy Economics, Elsevier, vol. 86(C).
    8. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    9. Zhijun Feng & Wei Chen, 2018. "Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    10. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    11. Arik Levinson & M. Scott Taylor, 2008. "Unmasking The Pollution Haven Effect," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 223-254, February.
    12. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    13. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
    14. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    15. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    16. Jiayue Liu & Jing Xie, 2020. "Environmental Regulation, Technological Innovation, and Export Competitiveness: An Empirical Study Based on China’s Manufacturing Industry," IJERPH, MDPI, vol. 17(4), pages 1-19, February.
    17. Wils, Annababette, 2001. "The effects of three categories of technological innovation on the use and price of nonrenewable resources," Ecological Economics, Elsevier, vol. 37(3), pages 457-472, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Chen & Yinrong Chen & Min Liu & Yi Chen, 2023. "Research on the Spatio-Temporal Characteristics and Influence Path of High-Quality Economic Development from the Perspective of Urban Land Transfer," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Xianghua Yue & Shikuan Zhao & Xin Ding & Long Xin, 2022. "How the Pilot Low-Carbon City Policy Promotes Urban Green Innovation: Based on Temporal-Spatial Dual Perspectives," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    3. Yan Liu & Meiyue Sang & Xiangrui Xu & Liyin Shen & Haijun Bao, 2023. "How Can Urban Regeneration Reduce Carbon Emissions? A Bibliometric Review," Land, MDPI, vol. 12(7), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Xu & Dong Chen & Rongrong Liu & Maoxian Zhou & Yunxiao Kong, 2021. "Environmental Regulation, Technological Innovation, and Industrial Transformation: An Empirical Study Based on City Function in China," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    2. Jevan M. Cherniwchan & M. Scott Taylor, 2022. "International Trade and the Environment: Three Remaining Empirical Challenges," NBER Working Papers 30020, National Bureau of Economic Research, Inc.
    3. Chunrong Yan & Danyang Di & Guoxiang Li & Jianmei Wang, 2022. "Environmental regulation and the supply efficiency of environmental public services: Evidence from environmental decentralization of 289 cities in China," Growth and Change, Wiley Blackwell, vol. 53(2), pages 515-535, June.
    4. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    5. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2012. "Trade and Environment: Further Empirical Evidence from Heterogeneous Panels Using Aggregate Data," GREDEG Working Papers 2012-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    6. Fæhn, Taran & Bruvoll, Annegrete, 2009. "Richer and cleaner--At others' expense?," Resource and Energy Economics, Elsevier, vol. 31(2), pages 103-122, May.
    7. Liu, Yang & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does energy aid mitigate the recipient countries’ carbon emissions?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 359-375.
    8. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    9. Burgi,Constantin Rudolf Salomo & Hovhannisyan,Shoghik & Joshi,Santosh Ram & Ahmad Famm Alkhuzam, 2022. "Informal Emissions," Policy Research Working Paper Series 10158, The World Bank.
    10. Ofori, Isaac K & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 1-58.
    11. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," MPRA Paper 115379, University Library of Munich, Germany, revised 09 Nov 2022.
    12. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).
    13. Enrico Maria de Angelis & Marina Di Giacomo & Davide Vannoni, 2019. "Climate Change and Economic Growth: The Role of Environmental Policy Stringency," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    14. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    15. Jianshi Wang & Yu Cheng & Chengxin Wang, 2022. "Environmental Regulation, Scientific and Technological Innovation, and Industrial Structure Upgrading in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    16. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2023. "Foreign direct investment and inclusive green growth in Africa: Energy efficiency contingencies and thresholds," Energy Economics, Elsevier, vol. 117(C).
    17. Julien Wolfersberger, 2019. "Growth and the environment: taking into account structural transformation," Working Papers hal-02156298, HAL.
    18. Yiming Hou & Guanwen Yin & Yanbin Chen, 2022. "Environmental Regulation, Financial Pressure and Industrial Ecological Efficiency of Resource-Based Cities in China: Spatiotemporal Characteristics and Impact Mechanism," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    19. Zheng Fang & Bihong Huang & Zhuoxiang Yang, 2020. "Trade openness and the environmental Kuznets curve: Evidence from Chinese cities," The World Economy, Wiley Blackwell, vol. 43(10), pages 2622-2649, October.
    20. Carson, Richard T, 2009. "Searching for Empirical Regularity and Theoretical Structure: The Environmental Kuznets Curve," University of California at San Diego, Economics Working Paper Series qt4m6263c2, Department of Economics, UC San Diego.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12837-:d:935414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.