IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p3038-d517705.html
   My bibliography  Save this article

A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries

Author

Listed:
  • Victor Moutinho

    (Management and Economics Department and NECE-UBI, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal)

  • Mara Madaleno

    (GOVCOPP—Research Unit in Governance, Competitiveness and Public Policy, Department of Economics, Management, Industrial Engineering and Tourism (DEGEIT), University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

This paper evaluates the evolution of eco-efficiency for the 27 European Union (EU) countries over the period 2008–2018, provided the traditional high concerns of the EU concerning the economic growth-environmental performance relationship. The EU has triggered several initiatives and regulations regarding environmental protection over the years, but as well the Sustainable Development Goals demand it. Under this setting, we conduct a two-stage analysis, which computes eco-efficiency scores in the first stage for each of the pairs EU 27-year, through the nonparametric method data envelopment analysis (DEA), considering the ratio GDP per capita and greenhouse gas emissions (GHG). In the second stage, scores are used as a dependent variable in the proposed fractional regression model (FRM), whose determinants considered were eight pollutants (three greenhouse gases and five atmospheric pollutants). CO 2 /area and N 2 O/area effects are negative and significant, improving the eco-efficiency of the EU 27 countries. When the efficient European countries are excluded from the estimations, the results evidence that CO 2 /area and CH 4 /area decrease the DEA score. The country with the lowest GHG emissions and pollutant gases was Ireland, being the country within the considered period that mostly reduced emissions, particularly SOx and PM10, increasing its score.

Suggested Citation

  • Victor Moutinho & Mara Madaleno, 2021. "A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries," IJERPH, MDPI, vol. 18(6), pages 1-21, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3038-:d:517705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/3038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/3038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    2. Tenente, Marcos & Henriques, Carla & da Silva, Patrícia Pereira, 2020. "Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 293-314.
    3. Esmeralda Ramalho & Joaquim Ramalho & Pedro Henriques, 2010. "Fractional regression models for second stage DEA efficiency analyses," Journal of Productivity Analysis, Springer, vol. 34(3), pages 239-255, December.
    4. Randall Campbell & Kevin Rogers & Jon Rezek, 2008. "Efficient frontier estimation: a maximum entropy approach," Journal of Productivity Analysis, Springer, vol. 30(3), pages 213-221, December.
    5. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    6. Kounetas, Konstantinos, 2015. "Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries," Energy Policy, Elsevier, vol. 83(C), pages 277-287.
    7. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    8. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    9. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Li, Haitao & Chen, Chialin & Cook, Wade D. & Zhang, Jinlong & Zhu, Joe, 2018. "Two-stage network DEA: Who is the leader?," Omega, Elsevier, vol. 74(C), pages 15-19.
    12. McDonald, John, 2009. "Using least squares and tobit in second stage DEA efficiency analyses," European Journal of Operational Research, Elsevier, vol. 197(2), pages 792-798, September.
    13. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    14. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    15. Callens, Isabelle & Tyteca, Daniel, 1999. "Towards indicators of sustainable development for firms: A productive efficiency perspective," Ecological Economics, Elsevier, vol. 28(1), pages 41-53, January.
    16. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, September.
    17. Esmeralda A. Ramalho & Joaquim J. S. Ramalho & José M. R. Murteira, 2014. "A Generalized Goodness-of-functional Form Test for Binary and Fractional Regression Models," Manchester School, University of Manchester, vol. 82(4), pages 488-507, July.
    18. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    19. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    20. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    21. George Halkos & Kleoniki Natalia Petrou, 2019. "Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy," Energies, MDPI, vol. 12(19), pages 1-32, September.
    22. Pedro Macedo & Elvira Silva & Manuel Scotto, 2014. "Technical efficiency with state-contingent production frontiers using maximum entropy estimators," Journal of Productivity Analysis, Springer, vol. 41(1), pages 131-140, February.
    23. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    24. Elisenda Jové-Llopis & Agustí Segarra-Blasco, 2018. "Eco-Efficiency Actions and Firm Growth in European SMEs," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    25. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    26. Jon P. Rezek & Randall C. Campbell & Kevin E. Rogers, 2011. "Assessing Total Factor Productivity Growth in Sub‐Saharan African Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(2), pages 357-374, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Bian & Feng Lan & Zhao Hui & Jiamin Bai & Yuanping Wang, 2022. "Ecological Well-Being Performance Evaluation of Chinese Major Node Cities along the Belt and Road," Land, MDPI, vol. 11(11), pages 1-19, October.
    2. Jing Bian & Feng Lan & Yulin Zhou & Zhenzhen Peng & Mingfang Dong, 2022. "Spatial and Temporal Evolution and Driving Factors of Urban Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    3. Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Dongqi Sun & Wenbiao Zhang & Wenlong Li, 2021. "Evolution Characters and Influencing Factors of Regional Eco-Efficiency in a Developing Country: Evidence from Mongolia," IJERPH, MDPI, vol. 18(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
    2. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    3. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    6. Vera Pais-Magalhães & Victor Moutinho & António Cardoso Marques, 2021. "Scoring method of eco-efficiency using the DEA approach: evidence from European waste sectors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9726-9748, July.
    7. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2019. "Is Social Capital Green? Cultural Features and Environmental Performance in the European Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 795-822, March.
    8. Weltin, Meike & Hüttel, Silke, 2019. "Farm eco-efficiency: Can sustainable intensification make the difference?," FORLand Working Papers 10 (2019), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    9. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    10. Mariam Camarero & Juana Castillo-Giménez & Andrés Picazo-Tadeo & Cecilio Tamarit, 2014. "Is eco-efficiency in greenhouse gas emissions converging among European Union countries?," Empirical Economics, Springer, vol. 47(1), pages 143-168, August.
    11. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    12. Bonfiglio, Andrea & Arzeni, Andrea & Bodini, Antonella, 2017. "Assessing eco-efficiency of arable farms in rural areas," Agricultural Systems, Elsevier, vol. 151(C), pages 114-125.
    13. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Justice G. Djokoto & Ferguson K. Gidiglo & Francis Y. Srofenyoh & Kofi Aaron A-O. Agyei-Henaku & Akua A. Afrane Arthur & Charlotte Badu-Prah & John Fry, 2020. "Sectoral and spatio-temporal differentiation in technical efficiency: A meta-regression," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1773659-177, January.
    15. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    16. Eucabeth Majiwa & Boon L. Lee & Clevo Wilson & Hidemichi Fujii & Shunsuke Managi, 2018. "A network data envelopment analysis (NDEA) model of post-harvest handling: the case of Kenya’s rice processing industry," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(3), pages 631-648, June.
    17. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    18. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    19. Andrés J. Picazo-Tadeo & Juana Castillo & Mercedes Beltrán-Esteve, 2013. "A dynamic approach to measuring ecological-economic performance with directional distance functions: greenhouse gas emissions in the European Union," Working Papers 1304, Department of Applied Economics II, Universidad de Valencia.
    20. María Pérez Urdiales & Alfons Oude Lansink & Alan Wall, 2016. "Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 559-574, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3038-:d:517705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.