IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p176-d65378.html
   My bibliography  Save this article

Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids

Author

Listed:
  • Raji Atia

    (Graduate School of Energy and Environment Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan)

  • Noboru Yamada

    (Graduate School of Energy and Environment Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan)

Abstract

This paper considers the contribution of independent owners (IOs) operating within microgrids (MGs) toward green power generation in deregulated energy markets. An optimization scheme is introduced for sizing distributed renewable generation (DRG) and a distributed energy storage system (DESS) based on a novel energy management system (EMS) that accounts for demand response (DR), DESS dispatch and performance degradation, dynamic pricing environments, power distribution loss and irregular renewable generation. The proposed EMS utilizes an iterative Newton-Raphson linear programming algorithm that schedules resources in order to minimize the objective function, to deal with the complicated nonlinear nature of the problem and to enable efficient long-term assessments. The EMS is used to evaluate candidate solutions that are generated by a genetic algorithm (GA) to determine the optimal combination of DRG and DESS. A case study for IEEE 34-bus distribution MG in Okinawa, Japan, is used for testing the algorithm and analyzing the potential for IO/MG investments and their strategies.

Suggested Citation

  • Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:176-:d:65378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    2. Hao Bai & Shihong Miao & Xiaohong Ran & Chang Ye, 2015. "Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market," Energies, MDPI, vol. 8(3), pages 1-22, March.
    3. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    4. Il-Keun Song & Won-Wook Jung & Chul-Min Chu & Seong-Soo Cho & Hyun-Koo Kang & Joon-Ho Choi, 2013. "General and Simple Decision Method for DG Penetration Level in View of Voltage Regulation at Distribution Substation Transformers," Energies, MDPI, vol. 6(9), pages 1-13, September.
    5. Xiangang Peng & Lixiang Lin & Weiqin Zheng & Yi Liu, 2015. "Crisscross Optimization Algorithm and Monte Carlo Simulation for Solving Optimal Distributed Generation Allocation Problem," Energies, MDPI, vol. 8(12), pages 1-19, December.
    6. Rigo-Mariani, Rémy & Sareni, Bruno & Roboam, Xavier & Turpin, Christophe, 2014. "Optimal power dispatching strategies in smart-microgrids with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 649-658.
    7. Atia, Raji & Yamada, Noboru, 2015. "More accurate sizing of renewable energy sources under high levels of electric vehicle integration," Renewable Energy, Elsevier, vol. 81(C), pages 918-925.
    8. Cristina Rottondi & Markus Duchon & Dagmar Koss & Andrei Palamarciuc & Alessandro Pití & Giacomo Verticale & Bernhard Schätz, 2015. "An Energy Management Service for the Smart Office," Energies, MDPI, vol. 8(10), pages 1-18, October.
    9. Ran Li & Huizhuo Ma & Feifei Wang & Yihe Wang & Yang Liu & Zenghui Li, 2013. "Game Optimization Theory and Application in Distribution System Expansion Planning, Including Distributed Generation," Energies, MDPI, vol. 6(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2016. "A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids," Energies, MDPI, vol. 9(6), pages 1-16, June.
    2. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    3. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    4. Cristian Cepeda & Cesar Orozco-Henao & Winston Percybrooks & Juan Diego Pulgarín-Rivera & Oscar Danilo Montoya & Walter Gil-González & Juan Carlos Vélez, 2020. "Intelligent Fault Detection System for Microgrids," Energies, MDPI, vol. 13(5), pages 1-21, March.
    5. Rosa Morales González & Shahab Shariat Torbaghan & Madeleine Gibescu & Sjef Cobben, 2016. "Harnessing the Flexibility of Thermostatic Loads in Microgrids with Solar Power Generation," Energies, MDPI, vol. 9(7), pages 1-24, July.
    6. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    7. Khalilpour, Kaveh R. & Lusis, Peter, 2020. "Network capacity charge for sustainability and energy equity: A model-based analysis," Applied Energy, Elsevier, vol. 266(C).
    8. Hun-Chul Seo, 2017. "New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid," Sustainability, MDPI, vol. 9(4), pages 1-16, March.
    9. Jichun Liu & Zhengbo Chen & Yue Xiang, 2019. "Exploring Economic Criteria for Energy Storage System Sizing," Energies, MDPI, vol. 12(12), pages 1-17, June.
    10. Kim, Insu, 2018. "Optimal capacity of storage systems and photovoltaic systems able to control reactive power using the sensitivity analysis method," Energy, Elsevier, vol. 150(C), pages 642-652.
    11. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.
    12. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    13. Ali Hadi Abdulwahid & Shaorong Wang, 2016. "A Novel Approach for Microgrid Protection Based upon Combined ANFIS and Hilbert Space-Based Power Setting," Energies, MDPI, vol. 9(12), pages 1-25, December.
    14. Jing Qiu & Junhua Zhao & Dongxiao Wang & Yu Zheng, 2017. "Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost," Energies, MDPI, vol. 10(7), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Arens & Karen Derendorf & Frank Schuldt & Karsten Von Maydell & Carsten Agert, 2018. "Effect of EV Movement Schedule and Machine Learning-Based Load Forecasting on Electricity Cost of a Single Household," Energies, MDPI, vol. 11(11), pages 1-19, October.
    2. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.
    3. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making," Energy, Elsevier, vol. 134(C), pages 103-120.
    4. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    5. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    6. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    7. Spindler, Christian & Woll, Oliver & Schober, Dominik, 2018. "Sharing is not caring: Backward integration of consumers," ZEW Discussion Papers 18-006, ZEW - Leibniz Centre for European Economic Research.
    8. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    9. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    10. Hamed Moazami Goodarzi & Mohammad Hosein Kazemi, 2017. "A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm," Energies, MDPI, vol. 10(4), pages 1-17, April.
    11. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    12. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    13. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    14. Pfeifer, Antun & Feijoo, Felipe & Duić, Neven, 2023. "Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets," Energy, Elsevier, vol. 284(C).
    15. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    16. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    17. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    18. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    19. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    20. Alexander Vaninsky, 2018. "Optimal environment-friendly economic restructuring: the United States–China cooperation case study," Economic Change and Restructuring, Springer, vol. 51(3), pages 189-220, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:176-:d:65378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.