IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p459-d72127.html
   My bibliography  Save this article

A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids

Author

Listed:
  • Liuming Jing

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Dae-Hee Son

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Sang-Hee Kang

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Soon-Ryul Nam

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

Abstract

This paper proposes a novel protection method for single line-to-ground (SLG) faults in ungrounded low-inertia microgrids. The proposed method includes microgrid interface protection and unit protection. The microgrid interface protection is based on the difference between the zero-sequence voltage angle and the zero-sequence current angle at the microgrid interconnection transformer for fast selection of the faulty feeder. The microgrid unit protection is based on a comparison of the three zero-sequence current phase directions at each junction point of load or distributed energy resources. Methods are also included to locate the minimum fault section. The fault section location technology operates according to the coordination of microgrid unit protection. The proposed method responds to SLG faults that may occur in both the grid and the microgrid. Simulations of an ungrounded low-inertia microgrid with a relay model were carried out using Power System Computer Aided Design (PSCAD)/Electromagnetic Transients including DC (EMTDC).

Suggested Citation

  • Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2016. "A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids," Energies, MDPI, vol. 9(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:459-:d:72127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Tse Kuo & Shiue-Der Lu, 2013. "Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids," Energies, MDPI, vol. 6(11), pages 1-15, November.
    2. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    3. Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
    4. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    5. Cheol-Hee Yoo & Il-Yop Chung & Hak-Ju Lee & Sung-Soo Hong, 2013. "Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management," Energies, MDPI, vol. 6(10), pages 1-24, September.
    6. Hao Liang & Weihua Zhuang, 2014. "Stochastic Modeling and Optimization in a Microgrid: A Survey," Energies, MDPI, vol. 7(4), pages 1-24, March.
    7. Julio Pascual & Pablo Sanchis & Luis Marroyo, 2014. "Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management," Energies, MDPI, vol. 7(1), pages 1-28, January.
    8. Changchun Cai & Bing Jiang & Lihua Deng, 2015. "General Dynamic Equivalent Modeling of Microgrid Based on Physical Background," Energies, MDPI, vol. 8(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    2. Hasan Can Kılıçkıran & Hüseyin Akdemir & İbrahim Şengör & Bedri Kekezoğlu & Nikolaos G. Paterakis, 2018. "A Non-Standard Characteristic Based Protection Scheme for Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    4. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    5. Hyeon-Jin Moon & Young Jin Kim & Jae Won Chang & Seung-Il Moon, 2019. "Decentralised Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators," Energies, MDPI, vol. 12(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Hadi Abdulwahid & Shaorong Wang, 2016. "A Novel Approach for Microgrid Protection Based upon Combined ANFIS and Hilbert Space-Based Power Setting," Energies, MDPI, vol. 9(12), pages 1-25, December.
    2. Cristian Cepeda & Cesar Orozco-Henao & Winston Percybrooks & Juan Diego Pulgarín-Rivera & Oscar Danilo Montoya & Walter Gil-González & Juan Carlos Vélez, 2020. "Intelligent Fault Detection System for Microgrids," Energies, MDPI, vol. 13(5), pages 1-21, March.
    3. Wei-Tzer Huang & Tsai-Hsiang Chen & Hong-Ting Chen & Jhih-Siang Yang & Kuo-Lung Lian & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2015. "A Two-stage Optimal Network Reconfiguration Approach for Minimizing Energy Loss of Distribution Networks Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(12), pages 1-17, December.
    4. Iulia Stamatescu & Nicoleta Arghira & Ioana Făgărăşan & Grigore Stamatescu & Sergiu Stelian Iliescu & Vasile Calofir, 2017. "Decision Support System for a Low Voltage Renewable Energy System," Energies, MDPI, vol. 10(1), pages 1-15, January.
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    6. Mohamed A. Ahmed & Yong Cheol Kang & Young-Chon Kim, 2015. "Communication Network Architectures for Smart-House with Renewable Energy Resources," Energies, MDPI, vol. 8(8), pages 1-20, August.
    7. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    8. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    9. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    10. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    11. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    12. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    13. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    14. Mohamed Els. S. Abdelwareth & Dedet Candra Riawan & Chow Chompoo-inwai, 2023. "Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    15. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    16. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    17. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    18. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    19. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    20. Cabello, G.M. & Navas, S.J. & Vázquez, I.M. & Iranzo, A. & Pino, F.J., 2022. "Renewable medium-small projects in Spain: Past and present of microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:459-:d:72127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.