IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i5p1503-1531d17829.html
   My bibliography  Save this article

Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids

Author

Listed:
  • Eduardo Valsera-Naranjo

    (Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain)

  • Andreas Sumper

    (Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
    Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, School of Industrial Engineering of Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain
    IREC Catalonia Institute for Energy Research, Jardins de les Dones de Negre 1, 08930 Sant Adrià de Besòs, Barcelona, Spain)

  • Roberto Villafafila-Robles

    (Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
    Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, School of Industrial Engineering of Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain)

  • David Martínez-Vicente

    (Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain)

Abstract

This paper describes a grid impact analysis of charging electric vehicles (EV) using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the battery characteristics; and, finally, the recharge control strategies were taken into account. Once these main features were established, a statistical probabilistic model for the household electrical demand and for the EV charging parameters was determined. Finally, with these probabilistic models, the Monte Carlo analysis was performed within the established scenario in order to study the lines’ and the transformers’ loading levels. The results show that an accurate model for the battery gives a more precise estimation about the impact on the grid. Additionally, mobility patterns have been proved to be some of the most important key aspects for these type of studies.

Suggested Citation

  • Eduardo Valsera-Naranjo & Andreas Sumper & Roberto Villafafila-Robles & David Martínez-Vicente, 2012. "Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 5(5), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:5:p:1503-1531:d:17829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/5/1503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/5/1503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2020. "Integration of Electric Vehicles in Low-Voltage Distribution Networks Considering Voltage Management," Energies, MDPI, vol. 13(16), pages 1-23, August.
    2. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    3. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    4. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    5. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    6. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    7. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    8. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    9. Dillman, Kevin Joseph & Fazeli, Reza & Shafiei, Ehsan & Jónsson, Jón Örvar G. & Haraldsson, Hákon Valur & Davíðsdóttir, Brynhildur, 2021. "Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik's electrical system at the city and distribution system level," Utilities Policy, Elsevier, vol. 68(C).
    10. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    11. Paweł Pijarski & Piotr Kacejko, 2021. "Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations," Energies, MDPI, vol. 14(4), pages 1-21, February.
    12. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axsen, John & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2010. "Plug-in Hybrid Vehicle GHG Impacts in California: Integrating Consumer-Informed Recharge Profiles with an Electricity-Dispatch Model," Institute of Transportation Studies, Working Paper Series qt9zg6g60t, Institute of Transportation Studies, UC Davis.
    2. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    3. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    4. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    5. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    6. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    7. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    8. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    9. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    10. Ramea, Kalai & Bunch, David S. & Yang, Christopher & Yeh, Sonia & Ogden, Joan M., 2018. "Integration of behavioral effects from vehicle choice models into long-term energy systems optimization models," Energy Economics, Elsevier, vol. 74(C), pages 663-676.
    11. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
    12. Muhammad Naveed Iqbal & Lauri Kütt & Kamran Daniel & Bilal Asad & Payam Shams Ghahfarokhi, 2021. "Estimation of Harmonic Emission of Electric Vehicles and Their Impact on Low Voltage Residential Network," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    13. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    14. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    15. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    16. Calearo, Lisa & Marinelli, Mattia & Ziras, Charalampos, 2021. "A review of data sources for electric vehicle integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Davies-Shawhyde, Jamie, 2011. "Impact of Observed Travel and Recharging Behavior, Simulated Workplace Charging Infrastructure, and Vehicle Design on PHEV Utility Factors (UF), Total Charge Depleting (CD) Driving and Time of Day (TO," Institute of Transportation Studies, Working Paper Series qt0x499211, Institute of Transportation Studies, UC Davis.
    18. Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
    19. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    20. Nicholas, Michael A. & Tal, Gil & Woodjack, Justin, 2013. "California Statewide Charging Assessment Model for Plug-in Electric Vehicles: Learning from Statewide Travel Surveys," Institute of Transportation Studies, Working Paper Series qt3qz440nr, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:5:p:1503-1531:d:17829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.