IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2449-2475d35240.html
   My bibliography  Save this article

Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms

Author

Listed:
  • Monica Alonso

    (Department of Electrical Engineering, University Carlos III of Madrid, Avda de la Universidad 30, Madrid 28911, Spain)

  • Hortensia Amaris

    (Department of Electrical Engineering, University Carlos III of Madrid, Avda de la Universidad 30, Madrid 28911, Spain)

  • Jean Gardy Germain

    (Gas Natural Fenosa, Avda. San Luis 77, Madrid 28033, Spain)

  • Juan Manuel Galan

    (Gas Natural Fenosa, Avda. San Luis 77, Madrid 28033, Spain)

Abstract

Transportation electrification has become an important issue in recent decades and the large scale deployment of electric vehicles (EVs) has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems. In this paper, an optimisation algorithm to coordinate the charging of EVs has been developed and implemented using a Genetic Algorithm (GA), where thermal line limits, the load on transformers, voltage limits and parking availability patterns are taken into account to establish an optimal load pattern for EV charging-based reliability. This methodology has been applied to an existing residential low-voltage system. The results indicate that a smart charging schedule for EVs leads to a flattening of the load profile , peak load shaving and the prevention of the aging of power system elements.

Suggested Citation

  • Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2449-2475:d:35240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Finn, P. & Fitzpatrick, C. & Connolly, D., 2012. "Demand side management of electric car charging: Benefits for consumer and grid," Energy, Elsevier, vol. 42(1), pages 358-363.
    2. Weis, Allison & Jaramillo, Paulina & Michalek, Jeremy, 2014. "Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric power systems with high wind penetration," Applied Energy, Elsevier, vol. 115(C), pages 190-204.
    3. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    4. João Soares & Bruno Canizes & Cristina Lobo & Zita Vale & Hugo Morais, 2012. "Electric Vehicle Scenario Simulator Tool for Smart Grid Operators," Energies, MDPI, vol. 5(6), pages 1-19, June.
    5. Eduardo Valsera-Naranjo & Andreas Sumper & Roberto Villafafila-Robles & David Martínez-Vicente, 2012. "Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 5(5), pages 1-29, May.
    6. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    7. Kiviluoma, Juha & Meibom, Peter, 2011. "Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles," Energy, Elsevier, vol. 36(3), pages 1758-1767.
    8. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    9. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    10. Mehrdad Ehsani & Milad Falahi & Saeed Lotfifard, 2012. "Vehicle to Grid Services: Potential and Applications," Energies, MDPI, vol. 5(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    2. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    3. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
    4. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    5. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    6. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    7. Wei Gu & Haojun Yu & Wei Liu & Junpeng Zhu & Xiaohui Xu, 2013. "Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review," Energies, MDPI, vol. 6(9), pages 1-24, August.
    8. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    9. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    10. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    11. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    12. Verma, Aman & Raj, Ratan & Kumar, Mayank & Ghandehariun, Samane & Kumar, Amit, 2015. "Assessment of renewable energy technologies for charging electric vehicles in Canada," Energy, Elsevier, vol. 86(C), pages 548-559.
    13. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    14. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    15. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    16. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
    17. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    18. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    19. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    20. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2449-2475:d:35240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.