IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1868-d1375267.html
   My bibliography  Save this article

Residual Biomass Gasification for Small-Scale Decentralized Electricity Production: Business Models for Lower Societal Costs

Author

Listed:
  • Laurene Desclaux

    (Programa de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

  • Amaro Olimpio Pereira

    (Programa de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

Abstract

Biomass gasification, a promising sustainable technology for decentralized electricity production, has the potential to displace fossil fuels while valorizing locally produced waste. Previous studies indicate that its technical and financial viabilities vary among projects, and few projects have been successfully developed, despite the sustainability benefits. This study identified and characterized the factors that influence the economic and environmental performances of such projects using a novel, hybrid method, with qualitative analysis using the Business Model Canvas and quantitative life-cycle costs (LCCs) considering the financial and external costs. The financial LCCs and external electricity generation costs were evaluated for business models in agro-industrial factories using proprietary residual biomasses and for those in isolated grids using local agricultural waste. The business models used for biomass gasification projects affect their LCCs and externalities more than factors such as their investment costs and energy efficiencies. The relationship between the business models, the financial performances of the projects, and their impacts on society are highlighted, showing that although projects using proprietary biomass waste have lower financial costs, off-grid projects generate more positive externalities, resulting in lower costs for society. These results indicate that policy support focused on appropriate business models may contribute to optimizing the use of financial incentives to foster investment in new sustainable technologies, contributing to the energy transition.

Suggested Citation

  • Laurene Desclaux & Amaro Olimpio Pereira, 2024. "Residual Biomass Gasification for Small-Scale Decentralized Electricity Production: Business Models for Lower Societal Costs," Energies, MDPI, vol. 17(8), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1868-:d:1375267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    2. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    3. Mechthild Donner & Hugo de Vries, 2021. "How to innovate business models for a circular bio‐economy?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 1932-1947, May.
    4. Steve Evans & Doroteya Vladimirova & Maria Holgado & Kirsten Van Fossen & Miying Yang & Elisabete A. Silva & Claire Y. Barlow, 2017. "Business Model Innovation for Sustainability: Towards a Unified Perspective for Creation of Sustainable Business Models," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 597-608, July.
    5. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    6. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    7. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
    8. Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
    9. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    10. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    11. Cleary, Julian & Caspersen, John P., 2015. "Comparing the life cycle impacts of using harvest residue as feedstock for small- and large-scale bioenergy systems (part I)," Energy, Elsevier, vol. 88(C), pages 917-926.
    12. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    13. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    14. Giulia Goffetti & Daniel Böckin & Henrikke Baumann & Anne‐Marie Tillman & Thomas Zobel, 2022. "Towards sustainable business models with a novel life cycle assessment method," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2019-2035, July.
    15. Kilinc-Ata, Nurcan & Proskuryakova, Liliana N., 2023. "Empirical analysis of the Russian power industry's transition to sustainability," Utilities Policy, Elsevier, vol. 82(C).
    16. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    2. Barbara Brenner & Daria Drdla, 2023. "Business Model Innovation toward Sustainability and Circularity—A Systematic Review of Innovation Types," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    3. J. R. Copa & C. E. Tuna & J. L. Silveira & R. A. M. Boloy & P. Brito & V. Silva & J. Cardoso & D. Eusébio, 2020. "Techno-Economic Assessment of the Use of Syngas Generated from Biomass to Feed an Internal Combustion Engine," Energies, MDPI, vol. 13(12), pages 1-31, June.
    4. Huchon, Valentin & Pinta, François & Commandré, Jean-Michel & Van De Steene, Laurent, 2020. "How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset," Energy, Elsevier, vol. 197(C).
    5. Casas-Ledón, Yannay & Flores, Mauricio & Jiménez, Romel & Ronsse, Frederik & Dewulf, Jo & Arteaga-Pérez, Luis E., 2019. "On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study," Energy, Elsevier, vol. 170(C), pages 763-776.
    6. Elizaveta Averina & Johan Frishammar & Vinit Parida, 2022. "Assessing sustainability opportunities for circular business models," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1464-1487, May.
    7. Xueliang Yuan & Leping Chen & Xuerou Sheng & Mengyue Liu & Yue Xu & Yuzhou Tang & Qingsong Wang & Qiao Ma & Jian Zuo, 2021. "Life Cycle Cost of Electricity Production: A Comparative Study of Coal-Fired, Biomass, and Wind Power in China," Energies, MDPI, vol. 14(12), pages 1-15, June.
    8. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Thapa, Sunil & Indrawan, Natarianto, 2018. "Scale-up of a downdraft gasifier system for commercial scale mobile power generation," Renewable Energy, Elsevier, vol. 118(C), pages 25-33.
    9. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    11. Cinzia Battistella & Maria Rosita Cagnina & Lucia Cicero & Nadia Preghenella, 2018. "Sustainable Business Models of SMEs: Challenges in Yacht Tourism Sector," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    12. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    13. Federica Murmura & Laura Bravi & Gilberto Santos, 2021. "Sustainable Process and Product Innovation in the Eyewear Sector: The Role of Industry 4.0 Enabling Technologies," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    14. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    15. Wiebke Reim & David Sjödin & Vinit Parida, 2021. "Circular business model implementation: A capability development case study from the manufacturing industry," Business Strategy and the Environment, Wiley Blackwell, vol. 30(6), pages 2745-2757, September.
    16. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    17. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    18. Sebastian Schroedel, 2023. "The Sustainable Business Model Database: 92 Patterns That Enable Sustainability in Business Model Innovation," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    19. María E. Aguilar-Fernández & José Ramon Otegi-Olaso, 2018. "Firm Size and the Business Model for Sustainable Innovation," Sustainability, MDPI, vol. 10(12), pages 1-27, December.
    20. Maria Rosa De Giacomo & Raimund Bleischwitz, 2020. "Business models for environmental sustainability: Contemporary shortcomings and some perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3352-3369, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1868-:d:1375267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.