IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1008-d1342844.html
   My bibliography  Save this article

Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System

Author

Listed:
  • Carlos Armenta-Déu

    (Department of Matter Structure, Thermal Physics and Electronics, Faculty of Physics Sciences, Complutense University of Madrid, 28040 Madrid, Spain)

  • Laura Demas

    (Polytechnical Institute, Université Clermont Auvergne, Campus Universitaire de Cézeaux, 2, Avenue Blaise-Pascal, TSA 60206-CS 60026, 63178 Aubière, France)

Abstract

This paper proposes a methodological way to compensate for the imbalance between energy generation and consumption using a battery block from electric vehicles as an energy reservoir through the well-known vehicle-to-grid system (V2G). This method is based on a simulation process developed by the authors that takes into consideration the daily fluctuations in energy consumption as well as the power level generated by an energy source, either conventional, renewable, or hybrid. This study shows that for very large electric vehicle fleets, the system is rendered non-viable, since the remaining energy in the battery block that allows the electric vehicle to be usable during the daytime avoids having to compensate for the energy grid imbalance, only allowing it to cover a percentage of the energy imbalance, which the proposed methodology may optimize. The analysis of the proposed methodology also shows the viability of the system when being applied to a small fleet of electric vehicles, not only compensating for the energy imbalance but also preserving the required energy in the battery of the electric vehicle to make it run. This method allows for predicting the optimum size of an electric vehicle battery, which depends on the energy generation level, coverage factor of the energy imbalance, and size of the electric vehicle fleet.

Suggested Citation

  • Carlos Armenta-Déu & Laura Demas, 2024. "Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System," Energies, MDPI, vol. 17(5), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1008-:d:1342844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stadler, Ingo, 2008. "Power grid balancing of energy systems with high renewable energy penetration by demand response," Utilities Policy, Elsevier, vol. 16(2), pages 90-98, June.
    2. Micha T. Kahlen & Wolfgang Ketter & Jan van Dalen, 2018. "Electric Vehicle Virtual Power Plant Dilemma: Grid Balancing Versus Customer Mobility," Production and Operations Management, Production and Operations Management Society, vol. 27(11), pages 2054-2070, November.
    3. Hill, Davion M. & Agarwal, Arun S. & Ayello, Francois, 2012. "Fleet operator risks for using fleets for V2G regulation," Energy Policy, Elsevier, vol. 41(C), pages 221-231.
    4. Carlo Corinaldesi & Georg Lettner & Daniel Schwabeneder & Amela Ajanovic & Hans Auer, 2020. "Impact of Different Charging Strategies for Electric Vehicles in an Austrian Office Site," Energies, MDPI, vol. 13(22), pages 1-17, November.
    5. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    6. Panos, Evangelos & Kannan, Ramachandran, 2016. "The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland," Energy, Elsevier, vol. 112(C), pages 1120-1138.
    7. Neumayer, Eric, 2001. "The human development index and sustainability -- a constructive proposal," Ecological Economics, Elsevier, vol. 39(1), pages 101-114, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Fragoso & Vladimir Bushenkov & Carlos Marques, 2012. "Integrated Water Management Using Feasible Goals Method and Interactive Decision Maps: The Case of Odivelas Irrigation," CEFAGE-UE Working Papers 2012_07, University of Evora, CEFAGE-UE (Portugal).
    2. D K Despotis, 2005. "A reassessment of the human development index via data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 969-980, August.
    3. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    4. Massimo Buscema & Pier Luigi Sacco & Guido Ferilli, 2016. "Multidimensional Similarities at a Global Scale: An Approach to Mapping Open Society Orientations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1239-1258, September.
    5. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    6. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    7. Van de Kerk, Geurt & Manuel, Arthur R., 2008. "A comprehensive index for a sustainable society: The SSI -- the Sustainable Society Index," Ecological Economics, Elsevier, vol. 66(2-3), pages 228-242, June.
    8. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    9. Man Liang & Shuwen Niu & Zhen Li & Wenli Qiang, 2019. "International Comparison of Human Development Index Corrected by Greenness and Fairness Indicators and Policy Implications for China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(1), pages 1-24, February.
    10. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    11. Fan Li & Dong Liu & Boyu Qin & Ke Sun & Dan Wang & Hanqing Liang & Cheng Zhang & Taikun Tao, 2022. "Multi-Objective Energy Optimal Scheduling of Multiple Pulsed Loads in Isolated Power Systems," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    12. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    13. Oliver Thomas & Simon Hagen & Ulrich Frank & Jan Recker & Lauri Wessel & Friedemann Kammler & Novica Zarvic & Ingo Timm, 2020. "Global Crises and the Role of BISE," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 385-396, August.
    14. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    15. Krunalkumar Thummar & Roger Abang & Katharina Menzel & Matheus Theodorus de Groot, 2022. "Coupling a Chlor-Alkali Membrane Electrolyzer Cell to a Wind Energy Source: Dynamic Modeling and Simulations," Energies, MDPI, vol. 15(2), pages 1-26, January.
    16. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    17. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    18. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    19. Vaillancourt, Kathleen & Bahn, Olivier & Levasseur, Annie, 2019. "The role of bioenergy in low-carbon energy transition scenarios: A case study for Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 24-34.
    20. Zhiwen Zhang & Jie Tang & Jiyuan Zhang & Tianci Zhang, 2024. "Research on Energy Hierarchical Management and Optimal Control of Compound Power Electric Vehicle," Energies, MDPI, vol. 17(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1008-:d:1342844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.