IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i1p265-d1313105.html
   My bibliography  Save this article

Innovation Solution in Photovoltaic Sector

Author

Listed:
  • Filip Czepło

    (Polish Photovoltaic Instalation, 5 Politechniczna Str., 05-110 Jabłonna, Poland)

  • Piotr F. Borowski

    (Faculty of Business and International Relations, Vistula University, 3 Stokłosy Str., 02-787 Warsaw, Poland)

Abstract

The modern world is moving towards a zero-emission economy; therefore, various actions are being taken to reduce the share of fossil fuels in energy production. The article examines the potential for the continued expansion of photovoltaic farms, with a special emphasis on farms utilising east–west panel orientation. The east–west orientation is an innovative solution with many advantages over the traditional north–south arrangement. The paper also makes a detailed assessment of the photovoltaic farm environment by applying two analyses based on the following factors: Political, Economic, Social, and Technological (PEST) and Demographic, Economic, Environmental, Political, Legal, Informational, Social, and Technological (DEEPLIST) factors. This is followed by an insightful, comprehensive review of the most important factors that contribute to the efficiency of photovoltaic installations, namely site conditions, existing infrastructure, and ability to connect to the electricity grid. The paper also devotes space to an analysis of daily energy price changes that affect the economic efficiency of the installation and discusses the potential for energy storage in the context of photovoltaic farms. The development of photovoltaics also requires investing in energy storage. All discussed issues fall within the scope of photovoltaic farm development and optimal use of energy resources.

Suggested Citation

  • Filip Czepło & Piotr F. Borowski, 2024. "Innovation Solution in Photovoltaic Sector," Energies, MDPI, vol. 17(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:1:p:265-:d:1313105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartłomiej Iglinski & Karol Flisikowski & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Anas Zyadin & Karthikeyan Natarajan, 2021. "Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation," Energies, MDPI, vol. 14(24), pages 1-27, December.
    2. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    3. Mukhtarov, Shahriyar & Mikayilov, Jeyhun I., 2023. "Could financial development eliminate energy poverty through renewable energy in Poland?," Energy Policy, Elsevier, vol. 182(C).
    4. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    5. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    6. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2022. "Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iwona Zdonek & Anna Mularczyk & Marian Turek & Stanisław Tokarski, 2023. "Perception of Prosumer Photovoltaic Technology in Poland: Usability, Ease of Use, Attitudes, and Purchase Intentions," Energies, MDPI, vol. 16(12), pages 1-18, June.
    2. Katarzyna Kocur-Bera, 2024. "Are Local Commune Governments Interested in the Development of Photovoltaics in Their Area? An Inside View of Poland," Energies, MDPI, vol. 17(8), pages 1-17, April.
    3. Paweł Kut & Katarzyna Pietrucha-Urbanik, 2023. "Bibliometric Analysis of Renewable Energy Research on the Example of the Two European Countries: Insights, Challenges, and Future Prospects," Energies, MDPI, vol. 17(1), pages 1-23, December.
    4. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    5. Maren Helen Meyer & Sandra Dullau & Pascal Scholz & Markus Andreas Meyer & Sabine Tischew, 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks," Land, MDPI, vol. 12(6), pages 1-16, June.
    6. Anna Rutkowska-Ziarko & Lesław Markowski, 2022. "Accounting and Market Risk Measures of Polish Energy Companies," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    9. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    10. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    11. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    12. Anna Mularczyk & Iwona Zdonek & Marian Turek & Stanisław Tokarski, 2022. "Intentions to Use Prosumer Photovoltaic Technology in Poland," Energies, MDPI, vol. 15(17), pages 1-15, August.
    13. Florian Gaman & Cristina Iacoboaea & Mihaela Aldea & Oana Luca & Adrian Andrei Stănescu & Carmen Mihaela Boteanu, 2022. "Energy Transition in Marginalized Urban Areas: The Case of Romania," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    14. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    15. Luis Ramirez Camargo & Felix Nitsch & Katharina Gruber & Javier Valdes & Jane Wuth & Wolfgang Dorner, 2019. "Potential Analysis of Hybrid Renewable Energy Systems for Self-Sufficient Residential Use in Germany and the Czech Republic," Energies, MDPI, vol. 12(21), pages 1-17, November.
    16. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    17. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    18. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    19. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    20. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:1:p:265-:d:1313105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.