IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p126-d469741.html
   My bibliography  Save this article

Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland

Author

Listed:
  • Marcin Bukowski

    (Institute of Economics, The State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland)

  • Janusz Majewski

    (Institute of Economics and Finance, Warsaw University of Life Science-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Agnieszka Sobolewska

    (Institute of Economics and Finance, Warsaw University of Life Science-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland)

Abstract

An increase in energy demand that is caused by fast economic development, a limited and constantly decreasing supply of traditional energy sources, as well as excessive environmental pollution that is caused by an increasing concentration of dust and gases in the atmosphere constitute the main factors that contribute to the ever-increasing interest in renewable sources of energy. The most important and promising renewable source of energy is thought to be solar energy. The aim of the paper is to assess the macroeconomic investment efficiency of photovoltaic installations in order to meet the demand for electric energy in single-family homes in Polish conditions. The conducted analysis comprises market characteristics and legal regulations concerning the sale of electric energy in Poland. Calculations were made for 320 variants that differed with regard to investment location, building orientation, and roof inclination. The results indicate that the most beneficial region for photovoltaic micro-installations, from a social perspective, is the south-east of and central Poland. The highest values of economic efficiency were achieved in the case of a southern roof inclination as well as a south-eastern and south-western building orientation. No big differences were observed in the economic investment efficiency for the panel inclinations. The calculated Discounted Payback Period, depending on the calculation method, equals 5.4 to 10 years. The results of the study confirm that the implemented support instruments for investments in photovoltaic installations producing energy for single-family house demand is economically viable.

Suggested Citation

  • Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:126-:d:469741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gradziuk, Piotr & Gradziuk, Barbara, 2019. "Economic Profitability Of Investment In A Photovoltaic Plant In South-East Poland," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2019(3).
    2. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    3. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    4. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    5. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    7. Peter, Jakob, 2019. "How Does Climate Change Affect Optimal Allocation of Variable Renewable Energy?," EWI Working Papers 2019-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    9. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    10. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2018. "Assessment of energy policies to promote photovoltaic generation in the European Union," Energy, Elsevier, vol. 151(C), pages 864-874.
    11. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-François, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: A generic model," Renewable Energy, Elsevier, vol. 35(12), pages 2674-2682.
    12. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries," Energy Policy, Elsevier, vol. 38(8), pages 4011-4020, August.
    13. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    14. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    15. Nuria Martín-Chivelet & Juan Carlos Gutiérrez & Miguel Alonso-Abella & Faustino Chenlo & José Cuenca, 2018. "Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade," Energies, MDPI, vol. 11(7), pages 1-15, July.
    16. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-Franois, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: a generic model," Working Papers 2010/16, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    17. Bernard Knutel & Anna Pierzyńska & Marcin Dębowski & Przemysław Bukowski & Arkadiusz Dyjakon, 2020. "Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen," Energies, MDPI, vol. 13(15), pages 1-16, August.
    18. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries," Energy Policy, Elsevier, vol. 38(7), pages 3297-3308, July.
    19. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    20. Pereira, Marcio Giannini & Sena, José Antonio & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2011. "Evaluation of the impact of access to electricity: A comparative analysis of South Africa, China, India and Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1427-1441, April.
    21. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    22. Mayis G. Gulaliyev & Elchin R. Mustafayev & Gulsura Y. Mehdiyeva, 2020. "Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case," Sustainability, MDPI, vol. 12(3), pages 1-11, February.
    23. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agata Jaroń & Anna Borucka & Rafał Parczewski, 2022. "Analysis of the Impact of the COVID-19 Pandemic on the Value of CO 2 Emissions from Electricity Generation," Energies, MDPI, vol. 15(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peprah, Forson & Gyamfi, Samuel & Effah-Donyina, Eric & Amo-Boateng, Mark, 2023. "The pathway for electricity prosumption in Ghana," Energy Policy, Elsevier, vol. 177(C).
    2. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    3. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    4. Antans Sauhats & Laila Zemite & Lubov Petrichenko & Igor Moshkin & Aivo Jasevics, 2018. "Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices," Energies, MDPI, vol. 11(11), pages 1-19, November.
    5. Mágui Lage & Rui Castro, 2022. "A Practical Review of the Public Policies Used to Promote the Implementation of PV Technology in Smart Grids: The Case of Portugal," Energies, MDPI, vol. 15(10), pages 1-20, May.
    6. Telaretti, E. & Dusonchet, L., 2017. "Stationary battery technologies in the U.S.: Development Trends and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 380-392.
    7. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    8. Ramírez, F. Javier & Honrubia-Escribano, A. & Gómez-Lázaro, E. & Pham, Duc T., 2017. "Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries," Energy Policy, Elsevier, vol. 102(C), pages 440-452.
    9. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    10. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2018. "Assessment of energy policies to promote photovoltaic generation in the European Union," Energy, Elsevier, vol. 151(C), pages 864-874.
    11. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    12. Małgorzata Rataj & Justyna Berniak-Woźny & Marlena Plebańska, 2021. "Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes," Energies, MDPI, vol. 14(21), pages 1-19, October.
    13. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    14. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    15. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    16. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    17. Antonelli, Marco & Desideri, Umberto, 2014. "Do feed-in tariffs drive PV cost or viceversa?," Applied Energy, Elsevier, vol. 135(C), pages 721-729.
    18. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    19. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the pay-back period of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 122(C), pages 458-470.
    20. Anita M. Bunea & Mariangela Guidolin & Piero Manfredi & Pompeo Della Posta, 2022. "Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns," Forecasting, MDPI, vol. 4(2), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:126-:d:469741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.