IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1275-d1046070.html
   My bibliography  Save this article

Developing an Integrated Energy–Economy Model Framework for Islands

Author

Listed:
  • Anna Flessa

    (E3Modelling S.A., 11523 Athens, Greece)

  • Dimitris Fragkiadakis

    (E3Modelling S.A., 11523 Athens, Greece)

  • Eleftheria Zisarou

    (E3Modelling S.A., 11523 Athens, Greece)

  • Panagiotis Fragkos

    (E3Modelling S.A., 11523 Athens, Greece)

Abstract

This paper presents a new energy–economy system modelling approach, developed specifically for energy system planning in non-interconnected islands, aiming for decarbonization. Energy system planning is an essential tool to shape the energy transition to reach carbon neutrality in the medium- and long-term horizon. Islands, as small-scale energy systems, have a limited contribution to the global climate targets, but due to their geographical and natural limitations, they present the potential to become frontrunners in the clean energy transition, especially regarding the efficient use of resources. The specificities and complexities of geographical islands cannot be adequately covered by the available energy modelling tools and new advanced approaches need to be developed to provide the appropriate support in designing the future decarbonized energy systems at insular level. Our methodological approach follows the adaptation and customization of well-established energy–economy modelling tools towards the development of an integrated island-scale energy–economy system model, capturing energy demand and supply by sector, heating/cooling and mobility requirements, energy efficiency potentials and their complex interactions through energy prices, storage, flexibility services and sectoral integration. By soft-linking the energy and economy system modelling tools through the consistent exchange of model parameters and variables, we developed a fully fledged modelling framework called IntE3-ISL, designed for islands with a horizon up to 2050.

Suggested Citation

  • Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1275-:d:1046070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Alves, M. & Segurado, R. & Costa, M., 2019. "Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores," Energy, Elsevier, vol. 182(C), pages 502-510.
    3. Friedemann Polzin & Mark Sanders & Bjarne Steffen & Florian Egli & Tobias S. Schmidt & Panagiotis Karkatsoulis & Panagiotis Fragkos & Leonidas Paroussos, 2021. "The effect of differentiating costs of capital by country and technology on the European energy transition," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    4. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
    5. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.
    6. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
    7. Timilsina,Govinda R. & Pang,Jun & Yang,Xi, 2019. "Linking Top-Down and Bottom-UP Models for Climate Policy Analysis : The Case of China," Policy Research Working Paper Series 8905, The World Bank.
    8. Zoi Vrontisi & Ioannis Charalampidis & Ulrike Lehr & Mark Meyer & Leonidas Paroussos & Christian Lutz & Yen E. Lam-González & Anastasia Arabadzhyan & Matías M. González & Carmelo J. León, 2022. "Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    9. Groppi, D. & Astiaso Garcia, D. & Lo Basso, G. & De Santoli, L., 2019. "Synergy between smart energy systems simulation tools for greening small Mediterranean islands," Renewable Energy, Elsevier, vol. 135(C), pages 515-524.
    10. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    11. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    12. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    13. Taibi, Emanuele & Fernández del Valle, Carlos & Howells, Mark, 2018. "Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study," Energy, Elsevier, vol. 164(C), pages 65-78.
    14. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    15. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    16. Taliotis, Constantinos & Rogner, Holger & Ressl, Stephan & Howells, Mark & Gardumi, Francesco, 2017. "Natural gas in Cyprus: The need for consolidated planning," Energy Policy, Elsevier, vol. 107(C), pages 197-209.
    17. Skelton, Alexandra C.H. & Paroussos, Leonidas & Allwood, Julian M., 2020. "Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model," Ecological Economics, Elsevier, vol. 173(C).
    18. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Foster, John & Wagner, Liam & Liebman, Ariel, 2015. "Modelling the Electricity and Natural Gas Sectors for the Future Grid: Developing Co-Optimisation Platforms for Market Redesign," MPRA Paper 70114, University Library of Munich, Germany.
    20. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
    21. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    22. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    23. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    6. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    7. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.
    8. François, Agnès & Roche, Robin & Grondin, Dominique & Benne, Michel, 2023. "Assessment of medium and long term scenarios for the electrical autonomy in island territories: The Reunion Island case study," Renewable Energy, Elsevier, vol. 216(C).
    9. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    10. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    11. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    12. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    13. Groppi, Daniele & Nastasi, Benedetto & Prina, Matteo Giacomo, 2022. "The EPLANoptMAC model to plan the decarbonisation of the maritime transport sector of a small island," Energy, Elsevier, vol. 254(PA).
    14. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    15. Dimou, Andreas & Vakalis, Stergios, 2022. "Technoeconomic analysis of green energy transitions in isolated grids: The case of Ai Stratis – Green Island," Renewable Energy, Elsevier, vol. 195(C), pages 66-75.
    16. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    17. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
    18. Marula Tsagkari, 2020. "Local Energy Projects on Islands: Assessing the Creation and Upscaling of Social Niches," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    19. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    20. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1275-:d:1046070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.