IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6112-d1222355.html
   My bibliography  Save this article

Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters

Author

Listed:
  • Venkata Bandi

    (Department of Mechanical Engineering, School of Engineering, Aalto University, Otakaari 4, 02150 Espoo, Finland)

  • Tiia Sahrakorpi

    (Department of Mechanical Engineering, School of Engineering, Aalto University, Otakaari 4, 02150 Espoo, Finland)

  • Jukka V. Paatero

    (School of Energy System, Lappeenranta-Lahti University of Technology LUT, Skinnarilankatu 34, 53850 Lappeenranta, Finland)

  • Risto Lahdelma

    (Department of Mechanical Engineering, School of Engineering, Aalto University, Otakaari 4, 02150 Espoo, Finland
    Department of Mathematics and Systems Analysis, School of Science, Aalto University, Otakaari 1, 02150 Espoo, Finland)

Abstract

Mini-grids need to imitate the transition path of a traditional grid to maintain their position as a sustainable energy access alternative, while aligning with the objectives of the seventh Sustainable Development Goal. One such strategy is implementing smart-metering solutions to improve business viability and remote monitoring of distributed mini-grid assets. However, selecting smart meters presents a significant challenge for mini-grid operators, primarily due to the installation costs involved and the complexities associated with operating mini-grids in rural areas. Against this backdrop, the current case study’ demonstrates the utility of multi-criteria decision aids, such as stochastic multi-criteria acceptability analysis (SMAA), to assist mini-grid operators in making informed decisions concerning smart-meter selection. In addition, practitioners’ narratives elucidate how implementing smart metering can function as part of mini-grid operations in rural areas. Furthermore, narratives highlight the importance of considering context-specific conditions to avoid the under-utilisation of smart meters.

Suggested Citation

  • Venkata Bandi & Tiia Sahrakorpi & Jukka V. Paatero & Risto Lahdelma, 2023. "Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters," Energies, MDPI, vol. 16(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6112-:d:1222355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.
    2. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft," Energy Policy, Elsevier, vol. 39(2), pages 1007-1015, February.
    3. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    4. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    5. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    6. Kennedy, Ryan & Mahajan, Aseem & Urpelainen, Johannes, 2020. "Crowdsourcing data on the reliability of electricity service: Evidence from a telephone survey in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 145(C).
    7. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    8. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    9. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    10. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    11. Proietti, Stefania & Sdringola, Paolo & Castellani, Francesco & Astolfi, Davide & Vuillermoz, Elisa, 2017. "On the contribution of renewable energies for feeding a high altitude Smart Mini Grid," Applied Energy, Elsevier, vol. 185(P2), pages 1694-1701.
    12. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    13. Nikoleta Andreadou & Miguel Olariaga Guardiola & Gianluca Fulli, 2016. "Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications," Energies, MDPI, vol. 9(5), pages 1-35, May.
    14. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto, 2013. "Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach," Energy Policy, Elsevier, vol. 59(C), pages 589-599.
    15. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2003. "Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA)," European Journal of Operational Research, Elsevier, vol. 147(1), pages 117-127, May.
    16. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    17. Regina Scheyvens & Glenn Banks & Emma Hughes, 2016. "The Private Sector and the SDGs: The Need to Move Beyond ‘Business as Usual’," Sustainable Development, John Wiley & Sons, Ltd., vol. 24(6), pages 371-382, November.
    18. Welsch, Manuel & Bazilian, Morgan & Howells, Mark & Divan, Deepak & Elzinga, David & Strbac, Goran & Jones, Lawrence & Keane, Andrew & Gielen, Dolf & Balijepalli, V.S.K. Murthy & Brew-Hammond, Abeeku , 2013. "Smart and Just Grids for sub-Saharan Africa: Exploring options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 336-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    3. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    4. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    5. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    6. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    7. Song, Shiling & Yang, Feng & Yu, Pingxiang & Xie, Jianhui, 2021. "Stochastic multi-attribute acceptability analysis with numerous alternatives," European Journal of Operational Research, Elsevier, vol. 295(2), pages 621-633.
    8. Durbach, Ian N., 2009. "The use of the SMAA acceptability index in descriptive decision analysis," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1229-1237, August.
    9. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    10. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    11. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    12. De Matteis, Domenico & Ishizaka, Alessio & Resce, Giuliano, 2019. "The ‘postcode lottery’ of the Italian public health bill analysed with the hierarchy Stochastic Multiobjective Acceptability Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    13. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    14. Raffaele Lagravinese & Paolo Liberati & Giuliano Resce, 2020. "Measuring Health Inequality in US: A Composite Index Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 921-946, February.
    15. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Christoph Graf & Magdalena Six, 2014. "The effect of information on the quality of decisions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 647-662, December.
    17. Wang, Haichao & Duanmu, Lin & Lahdelma, Risto & Li, Xiangli, 2017. "Developing a multicriteria decision support framework for CHP based combined district heating systems," Applied Energy, Elsevier, vol. 205(C), pages 345-368.
    18. Fan, Zhi-Ping & Liu, Yang & Feng, Bo, 2010. "A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations," European Journal of Operational Research, Elsevier, vol. 207(2), pages 906-915, December.
    19. García-Cáceres, Rafael Guillermo, 2020. "Stochastic Multicriteria Acceptability Analysis – Matching (SMAA-M)," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Dias, Luis C. & Vetschera, Rudolf, 2019. "On generating utility functions in Stochastic Multicriteria Acceptability Analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 672-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6112-:d:1222355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.