IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i2p906-915.html
   My bibliography  Save this article

A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations

Author

Listed:
  • Fan, Zhi-Ping
  • Liu, Yang
  • Feng, Bo

Abstract

This paper proposes a method for solving stochastic multiple criteria decision making (MCDM) problems, where evaluations of alternatives on considered criteria are random variables with known probability density functions or probability mass functions. Probabilities on all possible results of pairwise comparisons of alternatives are first calculated using Probability Theory. Then, all possible results of pairwise comparisons are classified into superior, indifferent and inferior ones using a predefined identification rule. Consequently, the probabilities on all possible results of pairwise comparisons are partitioned into superior, indifferent and inferior probabilities. Furthermore, based on the derived probabilities, an algorithm is developed to rank the alternatives. Finally, a numerical example is used to illustrate the feasibility and validity of the proposed method.

Suggested Citation

  • Fan, Zhi-Ping & Liu, Yang & Feng, Bo, 2010. "A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations," European Journal of Operational Research, Elsevier, vol. 207(2), pages 906-915, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:906-915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00388-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahdelma, Risto & Salminen, Pekka & Hokkanen, Joonas, 2002. "Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria," European Journal of Operational Research, Elsevier, vol. 142(2), pages 345-356, October.
    2. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    3. Nowak, Maciej, 2006. "INSDECM--an interactive procedure for stochastic multicriteria decision problems," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1413-1430, December.
    4. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    5. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, September.
    6. Durbach, Ian, 2006. "A simulation-based test of stochastic multicriteria acceptability analysis using achievement functions," European Journal of Operational Research, Elsevier, vol. 170(3), pages 923-934, May.
    7. Basak, Indrani, 1998. "Probabilistic judgments specified partially in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 153-164, July.
    8. Zaras, Kazimierz, 2001. "Rough approximation of a preference relation by a multi-attribute stochastic dominance for determinist and stochastic evaluation problems," European Journal of Operational Research, Elsevier, vol. 130(2), pages 305-314, April.
    9. R Bañuelas & J Antony, 2007. "Application of stochastic analytic hierarchy process within a domestic appliance manufacturer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 29-38, January.
    10. Martel, Jean M. & d'Avignon, Gilles R., 1982. "Projects ordering with multicriteria analysis," European Journal of Operational Research, Elsevier, vol. 10(1), pages 56-69, May.
    11. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    12. Zaras, Kazimierz, 2004. "Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problems," European Journal of Operational Research, Elsevier, vol. 159(1), pages 196-206, November.
    13. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2003. "Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA)," European Journal of Operational Research, Elsevier, vol. 147(1), pages 117-127, May.
    14. Lahdelma, Risto & Salminen, Pekka, 2006. "Stochastic multicriteria acceptability analysis using the data envelopment model," European Journal of Operational Research, Elsevier, vol. 170(1), pages 241-252, April.
    15. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    16. Durbach, Ian, 2009. "On the estimation of a satisficing model of choice using stochastic multicriteria acceptability analysis," Omega, Elsevier, vol. 37(3), pages 497-509, June.
    17. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    18. Martel, Jean-Marc & D'Avignon, Gilles R. & Couillard, Jean, 1986. "A fuzzy outranking relation in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 25(2), pages 258-271, May.
    19. Nowak, Maciej, 2004. "Preference and veto thresholds in multicriteria analysis based on stochastic dominance," European Journal of Operational Research, Elsevier, vol. 158(2), pages 339-350, October.
    20. Durbach, Ian N., 2009. "The use of the SMAA acceptability index in descriptive decision analysis," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1229-1237, August.
    21. Theodor J Stewart, 2005. "Dealing with Uncertainties in MCDA," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 445-466, Springer.
    22. Tervonen, Tommi & Hakonen, Henri & Lahdelma, Risto, 2008. "Elevator planning with stochastic multicriteria acceptability analysis," Omega, Elsevier, vol. 36(3), pages 352-362, June.
    23. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    24. D'Avignon, G. R. & Vincke, Ph., 1988. "An outranking method under uncertainty," European Journal of Operational Research, Elsevier, vol. 36(3), pages 311-321, September.
    25. Levary, Reuven R. & Wan, Ke, 1998. "A simulation approach for handling uncertainty in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 106(1), pages 116-122, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    2. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    3. Yang Liu & Zhi-Ping Fan & Yan-Ping Jiang, 2018. "Satisfied surgeon–patient matching: a model-based method," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2871-2891, November.
    4. R. A. Aliev & O. H. Huseynov & R. Serdaroglu, 2016. "Ranking of Z-Numbers and Its Application in Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1503-1519, November.
    5. Maciej Nowak & Tadeusz Trzaskalik, 2013. "Interactive procedure for a multiobjective stochastic discrete dynamic problem," Journal of Global Optimization, Springer, vol. 57(2), pages 315-330, October.
    6. Hong-Bin Yan & Tieju Ma & Songsak Sriboonchitta & Van-Nam Huynh, 2017. "A stochastic dominance based approach to consumer-oriented Kansei evaluation with multiple priorities," Annals of Operations Research, Springer, vol. 256(2), pages 329-357, September.
    7. Maciej Nowak & Tadeusz Trzaskalik, 2022. "A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection," Annals of Operations Research, Springer, vol. 311(2), pages 1155-1181, April.
    8. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    9. Durbach, Ian N., 2014. "Outranking under uncertainty using scenarios," European Journal of Operational Research, Elsevier, vol. 232(1), pages 98-108.
    10. Yan-Ping Jiang & Hai-Ming Liang & Minghe Sun, 2014. "A method based on the ideal and nadir solutions for stochastic MADM problems," Working Papers 0178mss, College of Business, University of Texas at San Antonio.
    11. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, vol. 9(10), pages 1-26, October.
    12. Chou, Jui-Sheng & Ongkowijoyo, Citra Satria, 2015. "Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority ranking method," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 29-39.
    13. Dinçer, Hasan & Yüksel, Serhat, 2019. "An integrated stochastic fuzzy MCDM approach to the balanced scorecard-based service evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 93-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    3. Yan-Ping Jiang & Hai-Ming Liang & Minghe Sun, 2014. "A method based on the ideal and nadir solutions for stochastic MADM problems," Working Papers 0178mss, College of Business, University of Texas at San Antonio.
    4. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    5. Menou, Abdellah & Benallou, Abdelhanine & Lahdelma, Risto & Salminen, Pekka, 2010. "Decision support for centralizing cargo at a Moroccan airport hub using stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 204(3), pages 621-629, August.
    6. Durbach, Ian N., 2014. "Outranking under uncertainty using scenarios," European Journal of Operational Research, Elsevier, vol. 232(1), pages 98-108.
    7. Durbach, Ian N., 2009. "The use of the SMAA acceptability index in descriptive decision analysis," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1229-1237, August.
    8. Durbach, Ian & Lahdelma, Risto & Salminen, Pekka, 2014. "The analytic hierarchy process with stochastic judgements," European Journal of Operational Research, Elsevier, vol. 238(2), pages 552-559.
    9. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    10. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    11. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    12. Jessop, Alan, 2014. "IMP: A decision aid for multiattribute evaluation using imprecise weight estimates," Omega, Elsevier, vol. 49(C), pages 18-29.
    13. Lahdelma, Risto & Salminen, Pekka, 2009. "Prospect theory and stochastic multicriteria acceptability analysis (SMAA)," Omega, Elsevier, vol. 37(5), pages 961-971, October.
    14. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    15. Su-min Yu & Zhi-jiao Du & Xu-dong Lin & Han-yang Luo & Jian-qiang Wang, 2020. "A Stochastic Dominance-Based Approach for Hotel Selection under Probabilistic Linguistic Environment," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
    16. Song, Lianlian & Fu, Yelin & Zhou, Peng & Lai, Kin Keung, 2017. "Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis," Energy Economics, Elsevier, vol. 66(C), pages 313-319.
    17. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    18. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    19. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    20. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:906-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.