IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5625-d1202919.html
   My bibliography  Save this article

Electromobility with Photovoltaic Generation in an Andean City

Author

Listed:
  • Bryam Paúl Lojano-Riera

    (Electrical Engineering Career, Research Group in Visible Radiation and Prototyping (GIRVyP), Universidad Católica de Cuenca, Cuenca 010101, Ecuador
    Laboratory of Luminotechnics, Center for Research, Innovation and Technology Transfer (CIITT), Universidad Católica de Cuenca, Ricaurte 010107, Ecuador)

  • Carlos Flores-Vázquez

    (Electrical Engineering Career, Research Group in Visible Radiation and Prototyping (GIRVyP), Universidad Católica de Cuenca, Cuenca 010101, Ecuador)

  • Juan-Carlos Cobos-Torres

    (Electrical Engineering Career, Research Group in Visible Radiation and Prototyping (GIRVyP), Universidad Católica de Cuenca, Cuenca 010101, Ecuador
    Academic Unit of Postgraduate, Embedded Systems and Artificial Vision in Architectural, Agricultural, Environmental and Automatic Sciences Research Group (SEVA4CA), Cuenca 010111, Ecuador)

  • David Vallejo-Ramírez

    (Electrical Engineering Career, Research Group in Visible Radiation and Prototyping (GIRVyP), Universidad Católica de Cuenca, Cuenca 010101, Ecuador
    Laboratory of Luminotechnics, Center for Research, Innovation and Technology Transfer (CIITT), Universidad Católica de Cuenca, Ricaurte 010107, Ecuador)

  • Daniel Icaza

    (Electrical Engineering Career, Research Group in Visible Radiation and Prototyping (GIRVyP), Universidad Católica de Cuenca, Cuenca 010101, Ecuador
    Laboratory of Luminotechnics, Center for Research, Innovation and Technology Transfer (CIITT), Universidad Católica de Cuenca, Ricaurte 010107, Ecuador)

Abstract

This research focuses on the measurement of the solar generation potential on the roads of the Andean city of Cuenca, Ecuador, and its application in electric vehicles. The tests were conducted in real environments, whereby natural and artificial structures obstruct direct radiation to the panel during the trajectory. An initial study is presented with daily operating conditions, using an urban bus route as a case study. The methodology used consists of taking measurements on different days and weather conditions to evaluate the photovoltaic generation and its contribution to the energy autonomy of the electric vehicle. Additionally, the energy autonomy between the electric vehicle with its factory configuration versus the one equipped with the solar panel is compared. For this purpose, a photovoltaic panel is installed on the roof of the vehicle, connected to a control system that monitors the radiation and current data, regulating the charging and discharging of the batteries. The aim is to demonstrate that the installation of solar panels on electric vehicles can significantly increase their energy autonomy. The contribution of this research could serve as an initial guide for governments and private companies to make decisions on the deployment of electric buses, electric vehicles and other vehicles integrated with solar photovoltaic energy, taking into account their routes. The findings of the study reveal that the implementation of the mobile charging system improves the range of the electric vehicle used in this study. In detail, an average increase of 40% in range was achieved in favorable environmental conditions and an increase of 14% in unfavorable environmental conditions. It is important to highlight that Cuenca has favorable conditions for solar systems due to its geographical location: altitude, hours of radiation and angle of incidence.

Suggested Citation

  • Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5625-:d:1202919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
    2. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2020. "Modeling and Simulation of a Hybrid System of Solar Panels and Wind Turbines for the Supply of Autonomous Electrical Energy to Organic Architectures," Energies, MDPI, vol. 13(18), pages 1-27, September.
    3. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    4. Kamran Taghizad-Tavana & As’ad Alizadeh & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan, 2023. "A Comprehensive Review of Electric Vehicles in Energy Systems: Integration with Renewable Energy Sources, Charging Levels, Different Types, and Standards," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Awasthi, Abhishek & Venkitusamy, Karthikeyan & Padmanaban, Sanjeevikumar & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Singh, Asheesh K., 2017. "Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm," Energy, Elsevier, vol. 133(C), pages 70-78.
    6. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
    7. Baldwin Cortés & Roberto Tapia & Juan J. Flores, 2021. "System-Independent Irradiance Sensorless ANN-Based MPPT for Photovoltaic Systems in Electric Vehicles," Energies, MDPI, vol. 14(16), pages 1-18, August.
    8. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2021. "Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050," Renewable Energy, Elsevier, vol. 170(C), pages 1324-1341.
    9. Tostado-Véliz, Marcos & Icaza-Alvarez, Daniel & Jurado, Francisco, 2021. "A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response," Renewable Energy, Elsevier, vol. 170(C), pages 884-896.
    10. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    11. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Koman & Dominika Toman & Radoslav Jankal & Silvia Krúpová, 2024. "Public Transport Infrastructure with Electromobility Elements at the Smart City Level to Support Sustainability," Sustainability, MDPI, vol. 16(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
    2. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    6. Zhang Yue & Arash Farnoosh & Qi Zang & Siyuan Chen, 2018. "GIS-Based Multi-Objective Particle Swarm Optimization of Charging Station of Electric Vehicles – Taking a District in Beijing as an Example," Working Papers hal-03187920, HAL.
    7. YingHua He & Thierry Magnac, 2022. "Application Costs and Congestion in Matching Markets," The Economic Journal, Royal Economic Society, vol. 132(648), pages 2918-2950.
    8. Kumar, Sushil & Kant, Shashi, 2007. "Exploded logit modeling of stakeholders' preferences for multiple forest values," Forest Policy and Economics, Elsevier, vol. 9(5), pages 516-526, January.
    9. Dickinson, David L. & Masclet, David & Peterle, Emmanuel, 2018. "Discrimination as favoritism: The private benefits and social costs of in-group favoritism in an experimental labor market," European Economic Review, Elsevier, vol. 104(C), pages 220-236.
    10. Ralph Stevens & Jennifer Alonso Garcia & Hazel Bateman & Arthur van Soest & Johan Bonekamp, 2022. "Saving preferences after retirement," ULB Institutional Repository 2013/342267, ULB -- Universite Libre de Bruxelles.
    11. Barbara Baarsma, 2003. "The Valuation of the IJmeer Nature Reserve using Conjoint Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 343-356, July.
    12. Gopindra Sivakumar Nair & Sebastian Astroza & Chandra R. Bhat & Sara Khoeini & Ram M. Pendyala, 2018. "An application of a rank ordered probit modeling approach to understanding level of interest in autonomous vehicles," Transportation, Springer, vol. 45(6), pages 1623-1637, November.
    13. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    14. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    15. del Saz Salazar, Salvador & Hernandez Sancho, Francesc & Sala Garrido, Ramon, 2009. "Estimación del valor económico de la calidad del agua de un río mediante una doble aproximación: una aplicación de los principios económicos de la Directiva Marco del Agua," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(01), pages 1-27.
    16. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    17. Qingqin Wang & Xiaofeng Sun & Ruonan Wang & Lining Zhou & Haizhu Zhou & Yanqiang Di & Yanyi Li & Qi Zhang, 2023. "Research on Urban Energy Sustainable Plan under the Background of Low-Carbon Development," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    18. Martin Wiegand, 2020. "Welfare Measurement and Poverty Targeting Based on Participatory Wealth Rankings," Tinbergen Institute Discussion Papers 20-086/V, Tinbergen Institute.
    19. Darren Hudson & Karina Gallardo & Terry Hanson, 2005. "Hypothetical (Non)Bias In Choice Experiments: Evidence From Freshwater Prawns," Experimental 0503003, University Library of Munich, Germany.
    20. Liu, Gang, 2007. "A behavioral model of work-trip mode choice in Shanghai," China Economic Review, Elsevier, vol. 18(4), pages 456-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5625-:d:1202919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.