IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9403-d1001157.html
   My bibliography  Save this article

Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models

Author

Listed:
  • Ju-Yeol Ryu

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Bora Lee

    (Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea)

  • Sungho Park

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Seonghyeon Hwang

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Hyemin Park

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Changhyeong Lee

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Dohyeon Kwon

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

Abstract

The rising share of renewable energy in the energy mix brings with it new challenges such as power curtailment and lack of reliable large-scale energy grid. The forecasting of wind power generation for provision of flexibility, defined as the ability to absorb and manage fluctuations in the demand and supply by storing energy at times of surplus and releasing it when needed, is important. In this study, short-term forecasting models of wind power generation were developed using the conventional time-series method and hybrid models using support vector regression (SVR) based on rolling origin recalibration. For the application of the methodology, the meteorological database from Korea Meteorological Administration and actual operating data of a wind power turbine (2.3 MW) from 1 January to 31 December 2015 were used. The results showed that the proposed SVR model has higher forecasting accuracy than the existing time-series methods. In addition, the conventional time-series model has high accuracy under proper curation of wind turbine operation data. Therefore, the analysis results reveal that data curation and weather information are as important as the model for wind power forecasting.

Suggested Citation

  • Ju-Yeol Ryu & Bora Lee & Sungho Park & Seonghyeon Hwang & Hyemin Park & Changhyeong Lee & Dohyeon Kwon, 2022. "Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9403-:d:1001157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    4. David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
    5. Felipe Arraño-Vargas & Zhiwei Shen & Shan Jiang & John Fletcher & Georgios Konstantinou, 2022. "Challenges and Mitigation Measures in Power Systems with High Share of Renewables—The Australian Experience," Energies, MDPI, vol. 15(2), pages 1-22, January.
    6. Rongsheng Liu & Minfang Peng & Xianghui Xiao, 2018. "Ultra-Short-Term Wind Power Prediction Based on Multivariate Phase Space Reconstruction and Multivariate Linear Regression," Energies, MDPI, vol. 11(10), pages 1-17, October.
    7. Hong Zhang & Lixing Chen & Yong Qu & Guo Zhao & Zhenwei Guo, 2014. "Support Vector Regression Based on Grid-Search Method for Short-Term Wind Power Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-11, June.
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
    9. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    10. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    11. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    12. Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthick Kanagarathinam & S. K. Aruna & S. Ravivarman & Mejdl Safran & Sultan Alfarhood & Waleed Alrajhi, 2023. "Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Mohammed Elsayed Lotfy & Theophilus Amara & Keifa Vamba Konneh & Tomonobu Senjyu, 2019. "Assessing the Techno-Economic Benefits of Flexible Demand Resources Scheduling for Renewable Energy–Based Smart Microgrid Planning," Future Internet, MDPI, vol. 11(10), pages 1-16, October.
    2. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    3. Kumar Shivam & Jong-Chyuan Tzou & Shang-Chen Wu, 2020. "Multi-Step Short-Term Wind Speed Prediction Using a Residual Dilated Causal Convolutional Network with Nonlinear Attention," Energies, MDPI, vol. 13(7), pages 1-29, April.
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    6. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    7. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    8. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    9. Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
    10. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    11. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    12. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    13. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    14. Christy Pérez-Albornoz & Ángel Hernández-Gómez & Victor Ramirez & Damien Guilbert, 2023. "Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method," Clean Technol., MDPI, vol. 5(2), pages 1-22, June.
    15. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    16. Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
    17. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    18. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    19. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    20. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9403-:d:1001157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.