IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1535-d336658.html
   My bibliography  Save this article

Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis

Author

Listed:
  • Patrick Gasser

    (Future Resilient Systems (FRS), Singapore-ETH Centre (SEC), Swiss Federal Institute of Technology (ETH) Zürich, Singapore 138602, Singapore)

  • Marco Cinelli

    (Future Resilient Systems (FRS), Singapore-ETH Centre (SEC), Swiss Federal Institute of Technology (ETH) Zürich, Singapore 138602, Singapore
    Present address: Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland.)

  • Anna Labijak

    (Institute of Computing Science, Poznań University of Technology (PUT), 60-965 Poznań, Poland)

  • Matteo Spada

    (Laboratory for Energy Systems Analysis (LEA), Paul Scherrer Institut (PSI), 5232 Villigen PSI, Switzerland)

  • Peter Burgherr

    (Laboratory for Energy Systems Analysis (LEA), Paul Scherrer Institut (PSI), 5232 Villigen PSI, Switzerland)

  • Miłosz Kadziński

    (Institute of Computing Science, Poznań University of Technology (PUT), 60-965 Poznań, Poland)

  • Božidar Stojadinović

    (Department of Civil, Environmental and Geomatic Engineering, Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zurich, Switzerland)

Abstract

The interest in studying energy systems’ resilience is increasing due to a rising awareness of the importance of having a secure energy supply. This growing trend is a result of a series of recent disruptions, among others also affecting electricity systems. Therefore, it is of crucial importance for policymakers to determine whether their country has a resilient electricity supply. Starting from a set of 12 indicators, this paper uses data envelopment analysis (DEA) to comprehensively evaluate the electricity supply resilience of 140 countries worldwide. Two DEA models are applied: (1) the original ratio-based Charnes, Cooper, and Rhodes (CCR) model and (2) a novel hybrid framework for robust efficiency analysis incorporating linear programming and Monte Carlo simulations. Results show that the CCR model deems 31 countries as efficient and hence lacks the capability to differentiate them. Furthermore, the CCR model considers only the best weight vectors for each country, which are not necessarily representative of the overall performance of the countries. The robustness analysis explores these limitations and identifies South Korea, Singapore and Canada as the most resilient countries. Finally, country analyses are conducted, where Singapore’s and Japan’s performances and improvement potentials are discussed.

Suggested Citation

  • Patrick Gasser & Marco Cinelli & Anna Labijak & Matteo Spada & Peter Burgherr & Miłosz Kadziński & Božidar Stojadinović, 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis," Energies, MDPI, vol. 13(7), pages 1-35, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1535-:d:336658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    2. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    3. World Bank, 2018. "Doing Business 2018," World Bank Publications - Books, The World Bank Group, number 28608, December.
    4. Molyneaux, Lynette & Wagner, Liam & Froome, Craig & Foster, John, 2012. "Resilience and electricity systems: A comparative analysis," Energy Policy, Elsevier, vol. 47(C), pages 188-201.
    5. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    6. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    7. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    8. World Bank, 2019. "Doing Business 2019," World Bank Publications - Books, The World Bank Group, number 30438, December.
    9. Bampatsou, Christina & Papadopoulos, Savas & Zervas, Efthimios, 2013. "Technical efficiency of economic systems of EU-15 countries based on energy consumption," Energy Policy, Elsevier, vol. 55(C), pages 426-434.
    10. Pang, Rui-Zhi & Deng, Zhong-Qi & Hu, Jin-li, 2015. "Clean energy use and total-factor efficiencies: An international comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1158-1171.
    11. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    12. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    13. Otsuki, Takashi & Mohd Isa, Aishah Binti & Samuelson, Ralph D., 2016. "Electric power grid interconnections in Northeast Asia: A quantitative analysis of opportunities and challenges," Energy Policy, Elsevier, vol. 89(C), pages 311-329.
    14. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    15. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Chang, Ming-Chung, 2014. "Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU," Energy Policy, Elsevier, vol. 67(C), pages 648-655.
    18. Kadziński, Miłosz & Labijak, Anna & Napieraj, Małgorzata, 2017. "Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports," Omega, Elsevier, vol. 67(C), pages 1-18.
    19. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    20. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.
    21. Chuanyi Ji & Yun Wei & Henry Mei & Jorge Calzada & Matthew Carey & Steve Church & Timothy Hayes & Brian Nugent & Gregory Stella & Matthew Wallace & Joe White & Robert Wilcox, 2016. "Large-scale data analysis of power grid resilience across multiple US service regions," Nature Energy, Nature, vol. 1(5), pages 1-8, May.
    22. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    23. Patlitzianas, Konstantinos D. & Doukas, Haris & Kagiannas, Argyris G. & Psarras, John, 2008. "Sustainable energy policy indicators: Review and recommendations," Renewable Energy, Elsevier, vol. 33(5), pages 966-973.
    24. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    25. Peng Zhou & Kim Leng Poh & Beng Wah Ang, 2016. "Data Envelopment Analysis for Measuring Environmental Performance," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 31-49, Springer.
    26. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    27. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    28. Joe Sarkis, 2007. "Preparing Your Data for DEA," Springer Books, in: Joe Zhu & Wade D. Cook (ed.), Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, chapter 0, pages 305-320, Springer.
    29. George Halkos & Kleoniki Natalia Petrou, 2019. "Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy," Energies, MDPI, vol. 12(19), pages 1-32, September.
    30. Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.
    31. Lai-Wang Wang & Ke-Duc Le & Thi-Duong Nguyen, 2019. "Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach," Energies, MDPI, vol. 12(8), pages 1-14, April.
    32. Lahdelma, Risto & Salminen, Pekka, 2006. "Stochastic multicriteria acceptability analysis using the data envelopment model," European Journal of Operational Research, Elsevier, vol. 170(1), pages 241-252, April.
    33. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    34. Li, Mingquan & Wang, Qi, 2014. "International environmental efficiency differences and their determinants," Energy, Elsevier, vol. 78(C), pages 411-420.
    35. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    36. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    37. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    38. Wu, Gang & Liu, Lan-Cui & Han, Zhi-Yong & Wei, Yi-Ming, 2012. "Climate protection and China’s energy security: Win–win or tradeoff," Applied Energy, Elsevier, vol. 97(C), pages 157-163.
    39. Jin-chi Hsieh & Ching-cheng Lu & Ying Li & Yung-ho Chiu & Ya-sue Xu, 2019. "Environmental Assessment of European Union Countries," Energies, MDPI, vol. 12(2), pages 1-18, January.
    40. Jasiński, Dominik & Cinelli, Marco & Dias, Luis C. & Meredith, James & Kirwan, Kerry, 2018. "Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis," Resources Policy, Elsevier, vol. 58(C), pages 150-158.
    41. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    42. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    43. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldieri, Luigi & Gatto, Andrea & Vinci, Concetto Paolo, 2021. "Evaluation of energy resilience and adaptation policies: An energy efficiency analysis," Energy Policy, Elsevier, vol. 157(C).
    2. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    4. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    5. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    6. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    7. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    8. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    9. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    10. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    11. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    12. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    13. Changhong Zhao & Haonan Zhang & Yurong Zeng & Fengyun Li & Yuanxin Liu & Chengju Qin & Jiahai Yuan, 2018. "Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    14. Georgia Makridou, Kostas Andriosopoulos, Michael Doumpos, and Constantin Zopounidis, 2015. "A Two-stage approach for energy efficiency analysis in European Union countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    15. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    16. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    17. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    18. Govindan, Kannan & Kadziński, Miłosz & Ehling, Ronja & Miebs, Grzegorz, 2019. "Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA," Omega, Elsevier, vol. 85(C), pages 1-15.
    19. Anna Labijak-Kowalska & Miłosz Kadziński, 2023. "Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis," Operational Research, Springer, vol. 23(1), pages 1-34, March.
    20. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1535-:d:336658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.