IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1169-d328330.html
   My bibliography  Save this article

Thickness Distribution Prediction for Tectonically Deformed Coal with a Deep Belief Network: A Case Study

Author

Listed:
  • Xin Wang

    (Department of Data Science, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
    Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China)

  • Tongjun Chen

    (Department of Geophysics, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Hui Xu

    (Department of Data Science, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
    Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Thickness of tectonically deformed coal (TDC) has positive correlations with the susceptible gas outbursts in coal mines. To predict the TDC thickness of the coalbed, we proposed a prediction method using seismic attributes based on the deep belief network (DBN) and dimensionality reduction. Firstly, we built a DBN prediction model using the extracted attributes from a synthetic seismic section. Next, we transformed the possibly correlated seismic attributes into principal components through principal components analysis. Then, we compared the true TDC thickness with the predicted TDC thicknesses to evaluate the prediction accuracy of different models, i.e., a DBN model, a support vector machine model, and an extreme learning machine model. Finally, we used the DBN model to predict the TDC thickness of coalbed No. 8 in an operational coal mine based on synthetic experiments. Our studies showed that the predicted distribution of TDC thickness followed the regional characteristics of TDC development well and was positively correlated with the burial depth, coalbed thickness, and tectonic development. In summary, the proposed DBN model provided a reliable method for predicting TDC thickness and reducing gas outbursts in coal mine operations.

Suggested Citation

  • Xin Wang & Tongjun Chen & Hui Xu, 2020. "Thickness Distribution Prediction for Tectonically Deformed Coal with a Deep Belief Network: A Case Study," Energies, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1169-:d:328330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. Jun Lu & Yun Wang & Jingyi Chen, 2018. "Detection of Tectonically Deformed Coal Using Model-Based Joint Inversion of Multi-Component Seismic Data," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    2. Xiaobo Lin & Pingsong Zhang & Fanbin Meng & Chang Liu, 2022. "A Coal Seam Thickness Prediction Model Based on CPSAC and WOA–LS-SVM: A Case Study on the ZJ Mine in the Huainan Coalfield," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Anmin Wang & Daiyong Cao & Yingchun Wei & Zhifei Liu, 2020. "Macromolecular Structure Controlling Micro Mechanical Properties of Vitrinite and Inertinite in Tectonically Deformed Coals—A Case Study in Fengfeng Coal Mine of Taihangshan Fault Zone (North China)," Energies, MDPI, vol. 13(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    2. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    3. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    4. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    5. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    6. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    7. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org.
    8. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    9. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    10. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    11. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    12. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    13. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    14. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    15. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.
    16. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    17. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.
    18. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    20. Simplice A. Asongu & Nicholas M. Odhiambo, 2021. "Income Levels, Governance and Inclusive Human Development in Sub-Saharan Africa," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(1), pages 71-103, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1169-:d:328330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.