IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p877-d321474.html
   My bibliography  Save this article

The Impact of Policy and Technology Parameters on the Economics of Microgrids for Rural Electrification: A Case Study of Remote Communities in Bolivia

Author

Listed:
  • Munir Husein

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Hyung-Ju Kim

    (Green Technology Center, 173, Toegye-ro, Seoul, 04554, Korea)

  • Il-Yop Chung

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

Abstract

Throughout the developing world, most remote and isolated communities are still without reliable electricity in the twenty-first century, and this is primarily due to the high cost of grid extensions. In communities that do have electricity, they usually rely on diesel generators, though these have high operating and maintenance costs, while also polluting the environment. A more sustainable approach is to deploy microgrids, however, microgrids have a high upfront cost, which is a major obstacle, especially in rural areas of developing countries. This study aims to investigate the parameters that can be influenced to make microgrids more economical for rural electrification. Through sensitivity analyses, five key policy and technology parameters were identified. They include real discount rates, diesel prices, grants, battery chemistry, and operating strategies. The system was then redesigned using scenarios formulated by varying these parameters. Results show that the parameters affect the configuration, levelized cost of energy (LCOE), renewable energy penetration (REP), and pollutant emissions. The study uses three remote communities in the Beni Department of Bolivia as case studies. MDSTool was used as a modeling framework to design the microgrids. The unique insights and lessons learned during the design process are discussed at length because these may be valuable for future microgrid designs for remote communities.

Suggested Citation

  • Munir Husein & Hyung-Ju Kim & Il-Yop Chung, 2020. "The Impact of Policy and Technology Parameters on the Economics of Microgrids for Rural Electrification: A Case Study of Remote Communities in Bolivia," Energies, MDPI, vol. 13(4), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:877-:d:321474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taryn Dinkelman, 2011. "The Effects of Rural Electrification on Employment: New Evidence from South Africa," American Economic Review, American Economic Association, vol. 101(7), pages 3078-3108, December.
    2. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    3. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
    4. Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
    5. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    6. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    7. Slough, Tara & Urpelainen, Johannes & Yang, Joonseok, 2015. "Light for all? Evaluating Brazil's rural electrification progress, 2000–2010," Energy Policy, Elsevier, vol. 86(C), pages 315-327.
    8. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    9. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    10. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    11. Akella, A.K. & Sharma, M.P. & Saini, R.P., 2007. "Optimum utilization of renewable energy sources in a remote area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 894-908, June.
    12. Ould Bilal, B. & Sambou, V. & Ndiaye, P.A. & Kébé, C.M.F. & Ndongo, M., 2010. "Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)," Renewable Energy, Elsevier, vol. 35(10), pages 2388-2390.
    13. Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
    14. Roy, Apratim & Kabir, Md. Ashfanoor, 2012. "Relative life cycle economic analysis of stand-alone solar PV and fossil fuel powered systems in Bangladesh with regard to load demand and market controlling factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4629-4637.
    15. Jacobson, Arne, 2007. "Connective Power: Solar Electrification and Social Change in Kenya," World Development, Elsevier, vol. 35(1), pages 144-162, January.
    16. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    17. Gustavsson, Mathias, 2007. "Educational benefits from solar technology--Access to solar electric services and changes in children's study routines, experiences from eastern province Zambia," Energy Policy, Elsevier, vol. 35(2), pages 1292-1299, February.
    18. Grogan, Louise & Sadanand, Asha, 2013. "Rural Electrification and Employment in Poor Countries: Evidence from Nicaragua," World Development, Elsevier, vol. 43(C), pages 252-265.
    19. Gibson, John & Olivia, Susan, 2010. "The Effect of Infrastructure Access and Quality on Non-Farm Enterprises in Rural Indonesia," World Development, Elsevier, vol. 38(5), pages 717-726, May.
    20. Williams, Nathaniel J. & Jaramillo, Paulina & Taneja, Jay & Ustun, Taha Selim, 2015. "Enabling private sector investment in microgrid-based rural electrification in developing countries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1268-1281.
    21. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    22. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    23. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2010. "Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages," Renewable Energy, Elsevier, vol. 35(2), pages 520-535.
    24. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    25. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    26. Solano-Peralta, Mauricio & Moner-Girona, Magda & van Sark, Wilfried G.J.H.M. & Vallvè, Xavier, 2009. ""Tropicalisation" of Feed-in Tariffs: A custom-made support scheme for hybrid PV/diesel systems in isolated regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2279-2294, December.
    27. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    28. Shahidur R. Khandker & Douglas F. Barnes & Hussain A. Samad, 2013. "Welfare Impacts of Rural Electrification: A Panel Data Analysis from Vietnam," Economic Development and Cultural Change, University of Chicago Press, vol. 61(3), pages 659-692.
    29. Mandelli, Stefano & Brivio, Claudio & Colombo, Emanuela & Merlo, Marco, 2016. "A sizing methodology based on Levelized Cost of Supplied and Lost Energy for off-grid rural electrification systems," Renewable Energy, Elsevier, vol. 89(C), pages 475-488.
    30. Silva, S.B. & Severino, M.M. & de Oliveira, M.A.G., 2013. "A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil," Renewable Energy, Elsevier, vol. 57(C), pages 384-389.
    31. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    32. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    33. Nfah, E.M. & Ngundam, J.M. & Vandenbergh, M. & Schmid, J., 2008. "Simulation of off-grid generation options for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 33(5), pages 1064-1072.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
    2. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    3. Cristian Tapia & Diana Ulloa & Mayra Pacheco-Cunduri & Jorge Hernández-Ambato & Jesús Rodríguez-Flores & Victor Herrera-Perez, 2022. "Optimal Fuzzy-Based Energy Management Strategy to Maximize Self-Consumption of PV Systems in the Residential Sector in Ecuador," Energies, MDPI, vol. 15(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    3. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    4. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    5. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    6. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    7. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    8. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    9. Lenz, Luciane & Munyehirwe, Anicet & Peters, Jörg & Sievert, Maximiliane, 2017. "Does Large-Scale Infrastructure Investment Alleviate Poverty? Impacts of Rwanda’s Electricity Access Roll-Out Program," World Development, Elsevier, vol. 89(C), pages 88-110.
    10. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    11. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    12. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    13. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    15. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    16. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    17. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    18. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    19. Aditi Bhattacharyya & Daisy Das & Arkadipta Ghosh, 2017. "Electrification and Welfare of Poor Households in Rural India," Working Papers 1702, Sam Houston State University, Department of Economics and International Business.
    20. Pradhan Shrestha, Rosy & Jirakiattikul, Sopin & Lohani, Sunil Prasad & Shrestha, Mandip, 2023. "Perceived impact of electricity on productive end use and its reality: Transition from electricity to income for rural Nepalese women," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:877-:d:321474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.