IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p637-d315847.html
   My bibliography  Save this article

Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms

Author

Listed:
  • Sean O’Connor

    (Department of Environmental Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland)

  • Ehiaze Ehimen

    (Department of Environmental Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland)

  • Suresh C. Pillai

    (Department of Environmental Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland)

  • Gary Lyons

    (Agri-Environment Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK)

  • John Bartlett

    (Department of Environmental Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland)

Abstract

The European Union’s (EU) climate and energy package requires all EU countries to reduce their greenhouse gas (GHG) emissions by 20% by 2020. Based on current trends, Ireland is on track to miss this target with a projected reduction of only 5% to 6%. The agriculture sector has consistently been the single largest contributor to Irish GHG emissions, representing 33% of all emissions in 2017. Small-scale anaerobic digestion (SSAD) holds promise as an attractive technology for the treatment of livestock manure and the organic fraction of municipal wastes, especially in low population communities or standalone waste treatment facilities. This study assesses the viability of SSAD in Ireland, by modelling the technical, economic, and environmental considerations of operating such plants on commercial Irish dairy farms. The study examines the integration of SSAD on dairy farms with various herd sizes ranging from 50 to 250 dairy cows, with co-digestion afforded by grass grown on available land. Results demonstrate feedstock quantities available on-farm to be sufficient to meet the farm’s energy needs with surplus energy exported, representing between 73% and 79% of the total energy generated. All scenarios investigated demonstrate a net CO 2 reduction ranging between 2059–173,237 kg CO 2 -eq. yr −1 . The study found SSAD systems to be profitable within the plant’s lifespan on farms with dairy herds sizes of >100 cows (with payback periods of 8–13 years). The simulated introduction of capital subvention grants similar to other EU countries was seen to significantly lower the plant payback periods. The insights generated from this study show SSAD to be an economically sustainable method for the mitigation of GHG emissions in the Irish agriculture sector.

Suggested Citation

  • Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:637-:d:315847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papurello, Davide & Boschetti, Andrea & Silvestri, Silvia & Khomenko, Iuliia & Biasioli, Franco, 2018. "Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation," Renewable Energy, Elsevier, vol. 125(C), pages 344-355.
    2. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    3. Clark P. Bishop & C. Richard Shumway, 2009. "The Economics of Dairy Anaerobic Digestion with Coproduct Marketing," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(3), pages 394-410, September.
    4. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 136-146.
    5. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    6. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    7. Gabriel D. Oreggioni & Baboo Lesh Gowreesunker & Savvas A. Tassou & Giuseppe Bianchi & Matthew Reilly & Marie E. Kirby & Trisha A. Toop & Mike K. Theodorou, 2017. "Potential for Energy Production from Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants," Energies, MDPI, vol. 10(9), pages 1-16, September.
    8. Kupecki, Jakub & Papurello, Davide & Lanzini, Andrea & Naumovich, Yevgeniy & Motylinski, Konrad & Blesznowski, Marcin & Santarelli, Massimo, 2018. "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)," Applied Energy, Elsevier, vol. 230(C), pages 1573-1584.
    9. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    10. Jones, Philip & Salter, Andrew, 2013. "Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context," Energy Policy, Elsevier, vol. 62(C), pages 215-225.
    11. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    12. Lantz, Mikael, 2012. "The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies," Applied Energy, Elsevier, vol. 98(C), pages 502-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alun Scott & Richard Blanchard, 2021. "The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    2. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    3. Adam Wąs & Piotr Sulewski & Vitaliy Krupin & Nazariy Popadynets & Agata Malak-Rawlikowska & Magdalena Szymańska & Iryna Skorokhod & Marcin Wysokiński, 2020. "The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production," Energies, MDPI, vol. 13(21), pages 1-20, November.
    4. Barnes, A.P. & McMillan, J. & Sutherland, L.-A. & Hopkins, J. & Thomson, S.G., 2022. "Farmer intentional pathways for net zero carbon: Exploring the lock-in effects of forestry and renewables," Land Use Policy, Elsevier, vol. 112(C).
    5. Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    2. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    3. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    4. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    5. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    7. Gabriel D. Oreggioni & Baboo Lesh Gowreesunker & Savvas A. Tassou & Giuseppe Bianchi & Matthew Reilly & Marie E. Kirby & Trisha A. Toop & Mike K. Theodorou, 2017. "Potential for Energy Production from Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants," Energies, MDPI, vol. 10(9), pages 1-16, September.
    8. Skorek-Osikowska, Anna & Martín-Gamboa, Mario & Iribarren, Diego & García-Gusano, Diego & Dufour, Javier, 2020. "Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential," Energy, Elsevier, vol. 200(C).
    9. Yin, Yongjun & Chen, Shaoxu & Li, Xusheng & Jiang, Bo & Zhao, Joe RuHe & Nong, Guangzai, 2021. "Comparative analysis of different CHP systems using biogas for the cassava starch plants," Energy, Elsevier, vol. 232(C).
    10. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    11. Buta Singh & Narinder Singh & Zsolt Čonka & Michal Kolcun & Zoltán Siménfalvi & Zsolt Péter & Zoltán Szamosi, 2021. "Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    12. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    13. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    15. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    16. Xie, Yujiao & Ma, Chunyan & Lu, Xiaohua & Ji, Xiaoyan, 2016. "Evaluation of imidazolium-based ionic liquids for biogas upgrading," Applied Energy, Elsevier, vol. 175(C), pages 69-81.
    17. Reynolds, Jemma & Kennedy, Robert & Ichapka, Mariah & Agarwal, Abhishek & Oke, Adekunle & Cox, Elsa & Edwards, Christine & Njuguna, James, 2022. "An evaluation of feedstocks for sustainable energy and circular economy practices in a small island community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    19. Guan, Tingting & Alvfors, Per & Lindbergh, Göran, 2014. "Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system," Applied Energy, Elsevier, vol. 130(C), pages 685-691.
    20. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:637-:d:315847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.