IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5502-d431985.html
   My bibliography  Save this article

Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix

Author

Listed:
  • Dominic Samoita

    (Department of Electrical and Communications Engineering, Moi University, P.O. Box 3900 Eldoret, Kenya)

  • Charles Nzila

    (Department of Manufacturing, Industrial and Textiles Engineering, Moi University, P.O. Box 3900 Eldoret, Kenya)

  • Poul Alberg Østergaard

    (Department of Planning, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark)

  • Arne Remmen

    (Department of Planning, Aalborg University, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark)

Abstract

Currently, Kenya depends mainly on oil, geothermal energy and hydro resources for electricity production, however all three have associated issues. Oil-based electricity generation is environmentally harmful, expensive and a burden to the national trade balance. The rivers for hydropower and their tributaries are found in arid and semi-arid areas with erratic rainfall leading to problems of supply security, and geothermal exploitation has cost and risk issues amongst others. Given these problems and the fact that Kenya has a significant yet underexploited potential for photo voltaic (PV)-based power generation, the limited—although growing—exploitation of solar PV in Kenya is explored in this paper as a means of diversifying and stabilising electricity supply. The potential for integration of PV into the Kenyan electricity generation mix is analysed together with the sociotechnical, economic, political, and institutional and policy barriers, which limit PV integration. We argue that these barriers can be overcome with improved and more robust policy regulations, additional investments in research and development, and improved coordination of the use of different renewable energy sources. Most noticeably, storage solutions and other elements of flexibility need to be incorporated to balance the intermittent character of electricity generation based on solar PV.

Suggested Citation

  • Dominic Samoita & Charles Nzila & Poul Alberg Østergaard & Arne Remmen, 2020. "Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix," Energies, MDPI, vol. 13(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5502-:d:431985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
    2. Opiyo, Nicholas, 2016. "A survey informed PV-based cost-effective electrification options for rural sub-Saharan Africa," Energy Policy, Elsevier, vol. 91(C), pages 1-11.
    3. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    4. Hansen, Ulrich Elmer & Pedersen, Mathilde Brix & Nygaard, Ivan, 2015. "Review of solar PV policies, interventions and diffusion in East Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 236-248.
    5. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    6. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    7. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    8. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    9. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
    10. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    11. Ogola, Pacifica F. Achieng & Davidsdottir, Brynhildur & Fridleifsson, Ingvar Birgir, 2012. "Potential contribution of geothermal energy to climate change adaptation: A case study of the arid and semi-arid eastern Baringo lowlands, Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4222-4246.
    12. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    13. Michael Child & Teresa Haukkala & Christian Breyer, 2017. "The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050," Sustainability, MDPI, vol. 9(8), pages 1-25, August.
    14. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    17. Ingmar Schlecht & Hannes Weigt, 2015. "Linking Europe: The Role of the Swiss Electricity Transmission Grid until 2050," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 151(II), pages 39-79, June.
    18. Rose, Amy & Stoner, Robert & Pérez-Arriaga, Ignacio, 2016. "Prospects for grid-connected solar PV in Kenya: A systems approach," Applied Energy, Elsevier, vol. 161(C), pages 583-590.
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    20. Adam, Aminu Dankaka & Apaydin, Gokhan, 2016. "Grid connected solar photovoltaic system as a tool for green house gas emission reduction in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1086-1091.
    21. Pfeifer, Antun & Krajačić, Goran & Ljubas, Davor & Duić, Neven, 2019. "Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications," Renewable Energy, Elsevier, vol. 143(C), pages 1310-1317.
    22. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    23. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    24. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    25. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. M. Indra Mahlia & I. M. Rizwanul Fattah, 2021. "Energy for Sustainable Future," Energies, MDPI, vol. 14(23), pages 1-2, November.
    2. Yassin Teikwa & Chacha Magasi, 2022. "Factors affecting sales of international solar mini-grids in Tanzania mainland," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(1), pages 82-92, January.
    3. Best, Rohan, 2023. "Assets power solar and battery uptake in Kenya," Energy Economics, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    3. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    4. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    5. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    6. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    7. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    8. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
    9. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    10. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    11. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    12. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    13. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    14. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    15. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    16. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    17. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    18. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    19. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    20. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5502-:d:431985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.