IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5054-d419551.html
   My bibliography  Save this article

Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models

Author

Listed:
  • Piotr Gradziuk

    (Economic Modelling Department, Institute of Rural and Agricultural Development, Polish Academy of Sciences, Nowy Swiat 72, 00-330 Warsaw, Poland)

  • Barbara Gradziuk

    (Department of Management and Marketing, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland)

  • Anna Trocewicz

    (Department of Economy, Faculty of Economic Sciences, Pope John Paul II State School of Higher Education, Sidorska 95/97, 21-500 Biała Podlaska, Poland)

  • Błażej Jendrzejewski

    (Economic Modelling Department, Institute of Rural and Agricultural Development, Polish Academy of Sciences, Nowy Swiat 72, 00-330 Warsaw, Poland)

Abstract

The mitigation of climate change poses a major challenge to the legal framework which aims to stimulate the development of renewable energy sources. The European Union’s direction for the use of renewable energy is distributed generation and an increased use of by-products and organic waste, especially in the production of next-generation biofuels. The main aim of this study is to evaluate the production potential of straw in Poland and the possibility of its use for energy purposes, including a forecast for 2030, on the assumption that the management of this resource is in accordance with the provisions of the Polish Code for Good Agriculture Practice. In Poland, in the years 1999–2018, the average annual surplus of straw harvested over agricultural consumption equalled 12.5 million tons (4.2 Mtoe). Its largest surpluses were in the Dolnośląskie, Kujawsko-Pomorskie, Lubelskie, Wielkopolskie, and Zachodniopomorskie voivodeships (NUTS2). Based on the developed panel models, forecasts for straw surpluses in Poland are presented in three perspectives: realistic, pessimistic, and optimistic. The forecasts show regional differentiation until 2030. Each of the three perspectives indicate a slow increase in these surpluses, and depending on the adopted version, it will range from 10.6% to 21.9%.

Suggested Citation

  • Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5054-:d:419551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarah L. Stattman & Aarti Gupta & Lena Partzsch & Peter Oosterveer, 2018. "Toward Sustainable Biofuels in the European Union? Lessons from a Decade of Hybrid Biofuel Governance," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    2. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    3. Kirsten Selbmann & Lydia Pforte, 2016. "Evaluation of Ecological Criteria of Biofuel Certification in Germany," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    4. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    5. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    6. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    7. Govinda R. Timilsina & David Zilberman (ed.), 2014. "The Impacts of Biofuels on the Economy, Environment, and Poverty," Natural Resource Management and Policy, Springer, edition 127, number 978-1-4939-0518-8, December.
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    10. Gradziuk, Piotr & Jendrzejewski, Błażej, 2017. "Wyzwania Dla Sektora Biopaliw W Kontekście Polityki Klimatyczno-Energetycznej Unii Europejskiej," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2017(2).
    11. Caesar B. Cororaton & Govinda R. Timilsina, 2014. "Biofuels and Poverty," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 79-89, Springer.
    12. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    13. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    14. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    15. Mikael Lantz & Thomas Prade & Serina Ahlgren & Lovisa Björnsson, 2018. "Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?," Energies, MDPI, vol. 11(10), pages 1-31, October.
    16. Paul B. Thompson, 2012. "The Agricultural Ethics of Biofuels: The Food vs. Fuel Debate," Agriculture, MDPI, vol. 2(4), pages 1-20, November.
    17. Falck-Zepeda, Jose Benjamin & Msangi, Siwa & Sulser, Timothy B. & Zambrano, Patricia, 2008. "Biofuels and Rural Economic Development in Latin America and the Caribbean," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6113, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    19. Govinda R. Timilsina & Ashish Shrestha, 2014. "An Overview of Global Markets and Policies," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 1-14, Springer.
    20. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    21. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
    22. Stelios Rozakis & Dimitris Kremmydas & Rafal Pudelko & M Borzecka-Walker & A. Faber, 2012. "Straw potential for energy purposes in Poland and optimal allocation to major co-firing power plants," Working Papers 2012-1, Agricultural University of Athens, Department Of Agricultural Economics.
    23. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    24. Rafał Baum & Karol Wajszczuk & Benedykt Pepliński & Jacek Wawrzynowicz, 2013. "Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 7(1), March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Banaś & Katarzyna Utnik-Banaś, 2022. "Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management," Energies, MDPI, vol. 15(6), pages 1-8, March.
    2. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    3. Sergii Kyryzyuk & Vitaliy Krupin & Olena Borodina & Adam Wąs, 2020. "Crop Residue Removal: Assessment of Future Bioenergy Generation Potential and Agro-Environmental Limitations Based on a Case Study of Ukraine," Energies, MDPI, vol. 13(20), pages 1-23, October.
    4. Václav Voltr & Martin Hruška & Luboš Nobilis, 2021. "Complex Valuation of Energy from Agricultural Crops including Local Conditions," Energies, MDPI, vol. 14(5), pages 1-25, March.
    5. Luis Armando Becerra-Pérez & Luis Rincón & John A. Posada-Duque, 2022. "Logistics and Costs of Agricultural Residues for Cellulosic Ethanol Production," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Joanna Irena Odzijewicz & Elżbieta Wołejko & Urszula Wydro & Mariola Wasil & Agata Jabłońska-Trypuć, 2022. "Utilization of Ashes from Biomass Combustion," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    8. Aneta Bełdycka-Bórawska & Piotr Bórawski & Lisa Holden & Tomasz Rokicki & Bogdan Klepacki, 2022. "Factors Shaping Performance of Polish Biodiesel Producers Participating in the Farm Accountancy Data Network in the Context of the Common Agricultural Policy of the European Union," Energies, MDPI, vol. 15(19), pages 1-25, October.
    9. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    10. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    3. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    4. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    5. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    6. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Luis Armando Becerra-Pérez & Luis Rincón & John A. Posada-Duque, 2022. "Logistics and Costs of Agricultural Residues for Cellulosic Ethanol Production," Energies, MDPI, vol. 15(12), pages 1-18, June.
    8. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    9. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    10. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    12. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    13. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    14. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    16. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    17. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    18. Carlos Omar Trejo-Pech & James A. Larson & Burton C. English & T. Edward Yu, 2019. "Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA," Energies, MDPI, vol. 12(16), pages 1-18, August.
    19. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    20. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5054-:d:419551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.