IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1700-1709.html
   My bibliography  Save this article

Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland

Author

Listed:
  • Devlin, Ger
  • Talbot, Bruce

Abstract

The Irish government has undertaken to reduce national CO2 emissions through a range of measures put out in their Biomass Action Plan and the National Renewable Energy Action Plan. The conversion of peat fired power plants to co-fire with renewable biomass is one of these. This paper considers how the adoption of sweeping policies impact on other actors presently supplying or utilizing woody biomass resources. The SAWMILL sector (18 sawmills), BOARD sector, 3 board plants, and ENERGY sector (3 peat fired power stations) were included in a Linear Programming (LP) based transportation study. Specific transport costs between each residue producing sawmill and each board and energy plant were modeled and used in finding the minimum delivered cost for a number of scenarios. Scenario 2015 represented the status quo, while Scenario 2030 represented a situation with 30% co-firing with woody biomass equivalents in the energy plants. For each time horizon, the problem was solved from the perspective of society at large (GLOBAL), for the benefit of the board sector (BOARD) or with emphasis on minimizing the cost to the energy sector (ENERGY). The cost of transporting alternative sources of renewable energy was varied between €100 and €500TJ−1. Results showed how overall supply costs increase with increasing alternative energy cost, but also how the dynamics between sectors focus worked. The cost of transport to the Energy sector ranged from €306,043 to €996,842 in Scenario 2015, while the increased demand in 2030 led to a range of between €1,132,831 and €4,926,040, depending on the alternative cost selected. For the Board sector, whose absolute demand remained constant, the total transport cost ranged between €868,506 and €3,454,916 in Scenario 2015. The unchanged demand showed that the transport costs also remained the same for the 2030 Scenario, however, the optimization focusing on the Energy sector, increased the delivery cost to the Board sector by up to €693,730 per year by 2015 and €842,271 per year by 2030, indicating how intervention would be necessary if political ambitions of a 30% co-firing should happen without detriment to other important wood based industries.

Suggested Citation

  • Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1700-1709
    DOI: 10.1016/j.apenergy.2013.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. Kinoshita, Tsuguki & Ohki, Takashi & Yamagata, Yoshiki, 2010. "Woody biomass supply potential for thermal power plants in Japan," Applied Energy, Elsevier, vol. 87(9), pages 2923-2927, September.
    3. Anselmo Filho, Pedro & Badr, Ossama, 2004. "Biomass resources for energy in North-Eastern Brazil," Applied Energy, Elsevier, vol. 77(1), pages 51-67, January.
    4. Lintunen, Jussi & Kangas, Hanna-Liisa, 2010. "The case of co-firing: The market level effects of subsidizing biomass co-combustion," Energy Economics, Elsevier, vol. 32(3), pages 694-701, May.
    5. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    6. Clancy, D. & Breen, J.P. & Thorne, F. & Wallace, M., 2012. "The influence of a Renewable Energy Feed in Tariff on the decision to produce biomass crops in Ireland," Energy Policy, Elsevier, vol. 41(C), pages 412-421.
    7. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    8. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    9. Tuohy, Aidan & Bazilian, Morgan & Doherty, Ronan & Gallachóir, Brian Ó & O'Malley, Mark, 2009. "Burning peat in Ireland: An electricity market dispatch perspective," Energy Policy, Elsevier, vol. 37(8), pages 3035-3042, August.
    10. Daianova, L. & Dotzauer, E. & Thorin, E. & Yan, J., 2012. "Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant," Applied Energy, Elsevier, vol. 92(C), pages 739-749.
    11. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    12. Devlin, Ger & Klvac, Radomir & McDonnell, Kevin, 2013. "Fuel efficiency and CO2 emissions of biomass based haulage in Ireland – A case study," Energy, Elsevier, vol. 54(C), pages 55-62.
    13. Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    2. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    3. Amanda Sosa & Kevin McDonnell & Ger Devlin, 2015. "Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools," Energies, MDPI, vol. 8(10), pages 1-16, October.
    4. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    5. Sangpil Ko & Kyoungjoon Choi & Seungmin Yu & Jun Lee, 2022. "A Stochastic Optimization Model for Sustainable Multimodal Transportation for Bioenergy Production," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    6. Fionnuala Murphy & Ger Devlin & Kevin McDonnell, 2015. "Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    7. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Yin, S., 2018. "Planning regional-scale electric power systems under uncertainty: A case study of Jing-Jin-Ji region, China," Applied Energy, Elsevier, vol. 212(C), pages 834-849.
    8. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    9. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    10. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    11. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    12. Wei, Yongmei & Ye, Qi & Ding, Yihong & Ai, Bingjun & Tan, Qinliang & Song, Wenda, 2021. "Optimization model of a thermal-solar-wind power planning considering economic and social benefits," Energy, Elsevier, vol. 222(C).
    13. Liang, Zhanwei & Chen, Hongwei & Zhao, Bin & Jia, Jiandong & Cheng, Kai, 2018. "Synergetic effects of firing gases/coal blends and adopting deep air staging on combustion characteristics," Applied Energy, Elsevier, vol. 228(C), pages 499-511.
    14. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
    2. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    3. Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
    4. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    5. Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
    6. Vukašinović, Vladimir & Gordić, Dušan, 2016. "Optimization and GIS-based combined approach for the determination of the most cost-effective investments in biomass sector," Applied Energy, Elsevier, vol. 178(C), pages 250-259.
    7. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    8. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    10. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    11. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    12. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    14. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    15. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    16. Griffith, Andrew P. & Haque, Mohua & Epplin, Francis M., 2014. "Cost to produce and deliver cellulosic feedstock to a biorefinery: Switchgrass and forage sorghum," Applied Energy, Elsevier, vol. 127(C), pages 44-54.
    17. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    18. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    19. Battuvshin, Biligt & Matsuoka, Yusuke & Shirasawa, Hiroaki & Toyama, Keisuke & Hayashi, Uichi & Aruga, Kazuhiro, 2020. "Supply potential and annual availability of timber and forest biomass resources for energy considering inter-prefectural trade in Japan," Land Use Policy, Elsevier, vol. 97(C).
    20. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1700-1709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.