IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p4013-d394163.html
   My bibliography  Save this article

Converting a Water Pressurized Network in a Small Town into a Solar Power Water System

Author

Listed:
  • Miguel Ángel Pardo

    (Department of Civil Engineering, University of Alicante, 03690 Alicante, Spain)

  • Héctor Fernández

    (Ciclo Hídrico, Diputación de Alicante, 03690 Alicante, Spain)

  • Antonio Jodar-Abellan

    (University Institute of Water and Environmental Sciences, University of Alicante, 03690 Alicante, Spain)

Abstract

The efficient management of water and energy is one challenge for managers of water pressurized systems. In a scheme with high pressure on the environment, solar power appears as an opportunity for nonrenewable energy expenditure reduction and emissions elimination. In Spain, new legislation that eliminates old taxes associated with solar energy production, a drop in the cost of solar photovoltaic modules, and higher values of irradiance has converted solar powered water systems into one of the trendiest topics in the water industry. One alternative to store energy (compulsory in standalone photovoltaic systems) when managing pressurized urban water networks is the use of head tanks (tanks accumulate water during the day and release it at night). This work intends to compare the pressurized network running as a standalone system and a hybrid solution that incorporates solar energy supply and electricity grids. The indicator used for finding the best choice is the net present value for the solar power water system lifespan. This study analyzed the possibility of transferring the energy surplus obtained at midday to the electricity grid, a circumstance introduced in the Spanish legislation since April 2019. We developed a real case study in a small town in the Alicante Province, whose findings provide planning policymakers with very useful information in this case and similar case studies

Suggested Citation

  • Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4013-:d:394163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/4013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/4013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    2. Getu Hailu & Alan S. Fung, 2019. "Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    3. Robert Jane & Gordon Parker & Gail Vaucher & Morris Berman, 2020. "Characterizing Meteorological Forecast Impact on Microgrid Optimization Performance and Design," Energies, MDPI, vol. 13(3), pages 1-23, January.
    4. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    5. Wong, Jianhui & Lim, Yun Seng & Tang, Jun Huat & Morris, Ezra, 2014. "Grid-connected photovoltaic system in Malaysia: A review on voltage issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 535-545.
    6. Markku Järvelä & Seppo Valkealahti, 2020. "Operation of a PV Power Plant during Overpower Events Caused by the Cloud Enhancement Phenomenon," Energies, MDPI, vol. 13(9), pages 1-15, May.
    7. Luis Gerardo González & Rommel Chacon & Bernardo Delgado & Dario Benavides & Juan Espinoza, 2020. "Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks," Energies, MDPI, vol. 13(15), pages 1-15, July.
    8. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    9. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    10. Tsuanyo, David & Azoumah, Yao & Aussel, Didier & Neveu, Pierre, 2015. "Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications," Energy, Elsevier, vol. 86(C), pages 152-163.
    11. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    12. Cao Yu & Yong Sheng Khoo & Jing Chai & Shuwei Han & Jianxi Yao, 2019. "Optimal Orientation and Tilt Angle for Maximizing in-Plane Solar Irradiation for PV Applications in Japan," Sustainability, MDPI, vol. 11(7), pages 1-8, April.
    13. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    14. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    15. Pande, P.C. & Singh, A.K. & Ansari, S. & Vyas, S.K. & Dave, B.K., 2003. "Design development and testing of a solar PV pump based drip system for orchards," Renewable Energy, Elsevier, vol. 28(3), pages 385-396.
    16. Arab, A.Hadj & Chenlo, F. & Mukadam, K. & Balenzategui, J.L., 1999. "Performance of PV water pumping systems," Renewable Energy, Elsevier, vol. 18(2), pages 191-204.
    17. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    18. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    19. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    20. Miguel Ángel Pardo & Ricardo Cobacho & Luis Bañón, 2020. "Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    21. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    22. Bijl, David L. & Bogaart, Patrick W. & Kram, Tom & de Vries, Bert J.M. & van Vuuren, Detlef P., 2016. "Long-term water demand for electricity, industry and households," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 75-86.
    23. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    24. Jesús Chazarra-Zapata & José Miguel Molina-Martínez & Francisco-Javier Pérez de la Cruz & Dolores Parras-Burgos & Antonio Ruíz Canales, 2020. "How to Reduce the Carbon Footprint of an Irrigation Community in the South-East of Spain by Use of Solar Energy," Energies, MDPI, vol. 13(11), pages 1-20, June.
    25. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    26. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    27. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    28. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    29. Gorjian, Shiva & Zadeh, Babak Nemat & Eltrop, Ludger & Shamshiri, Redmond R. & Amanlou, Yasaman, 2019. "Solar photovoltaic power generation in Iran: Development, policies, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 110-123.
    30. Luigi Cimorelli & Carmine Covelli & Bruno Molino & Domenico Pianese, 2020. "Optimal Regulation of Pumping Station in Water Distribution Networks Using Constant and Variable Speed Pumps: A Technical and Economical Comparison," Energies, MDPI, vol. 13(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Ángel Pardo & Ricardo Cobacho & Luis Bañón, 2020. "Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    2. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    3. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    4. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    5. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    6. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    7. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    8. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    9. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    10. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    11. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    12. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    13. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    14. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    15. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    16. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    17. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    18. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    19. Ramallo-González, Alfonso P. & Loonen, Roel & Tomat, Valentina & Zamora, Miguel Ángel & Surugin, Dmitry & Hensen, Jan, 2020. "Nomograms for de-complexing the dimensioning of off-grid PV systems," Renewable Energy, Elsevier, vol. 161(C), pages 162-172.
    20. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4013-:d:394163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.