IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i7p1444-1454.html
   My bibliography  Save this article

Energy pay-back period analysis of stand-alone photovoltaic systems

Author

Listed:
  • Kaldellis, J.K.
  • Zafirakis, D.
  • Kondili, E.

Abstract

The exploitation of solar energy by autonomous, photovoltaic (PV) based systems offers the opportunity for satisfying the electrification needs of numerous remote consumers worldwide in an environmentally friendly way. On the other hand, the sustainable character of these systems is strongly questioned by the energy intensity of processes involved in the various life cycle (LC) stages of the system components. Although there are several studies concerned with the estimation of the energy pay-back period (EPBP) for grid-connected systems, the same is not valid for stand-alone configurations. In this context, an integrated methodology is currently developed in order to estimate the EPBP of PV-battery (PV-Bat) configurations ensuring 100% energy autonomy. The main scope of the proposed analysis is to determine the optimum size of a corresponding system, comprised of multi-crystalline (mc-Si) PV modules and lead-acid (PbA) batteries, based on the criterion of minimum embodied energy, i.e. minimum EPBP. For this purpose, a representative case study examined considers the electrification needs of a typical remote consumer on the Island of Rhodes, Greece. According to the results obtained, the autonomous energy character of the system is reflected by the comparatively higher EPBP in comparison with the corresponding grid-connected option, nevertheless the PV-Bat configurations analyzed clearly constitute sustainable energy solutions. Finally, in order to increase the reliability of the calculation results, a sensitivity analysis is carried out, based on the variation of the input energy content data.

Suggested Citation

  • Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1444-1454
    DOI: 10.1016/j.renene.2009.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richards, B.S. & Watt, M.E., 2007. "Permanently dispelling a myth of photovoltaics via the adoption of a new net energy indicator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 162-172, January.
    2. Albrecht, Johan, 2007. "The future role of photovoltaics: A learning curve versus portfolio perspective," Energy Policy, Elsevier, vol. 35(4), pages 2296-2304, April.
    3. Kaldellis, J.K. & Koronakis, P. & Kavadias, K., 2004. "Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact," Renewable Energy, Elsevier, vol. 29(7), pages 1161-1180.
    4. Kaldellis, J.K. & Kavadias, K.A. & Koronakis, P.S., 2007. "Comparing wind and photovoltaic stand-alone power systems used for the electrification of remote consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 57-77, January.
    5. Nawaz, I. & Tiwari, G.N., 2006. "Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level," Energy Policy, Elsevier, vol. 34(17), pages 3144-3152, November.
    6. Manolakos, D & Papadakis, G & Papantonis, D & Kyritsis, S, 2004. "A stand-alone photovoltaic power system for remote villages using pumped water energy storage," Energy, Elsevier, vol. 29(1), pages 57-69.
    7. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    8. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    9. Celik, A.N., 2007. "Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 32(12), pages 2096-2115.
    10. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    11. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    12. Durisch, W. & Leutenegger, S. & Tille, D., 1998. "Comparison of small inverters for grid-independent photovoltaic systems," Renewable Energy, Elsevier, vol. 15(1), pages 585-589.
    13. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    14. Fernández-Infantes, Alberto & Contreras, Javier & Bernal-Agustín, José L., 2006. "Design of grid connected PV systems considering electrical, economical and environmental aspects: A practical case," Renewable Energy, Elsevier, vol. 31(13), pages 2042-2062.
    15. Notton, G. & Muselli, M. & Poggi, P. & Louche, A., 1998. "Sizing reduction induced by the choice of electrical applicances options in a stand-alone photovolatic production," Renewable Energy, Elsevier, vol. 15(1), pages 581-584.
    16. Kaldellis, J.K. & Spyropoulos, G.C. & Kavadias, K.A. & Koronaki, I.P., 2009. "Experimental validation of autonomous PV-based water pumping system optimum sizing," Renewable Energy, Elsevier, vol. 34(4), pages 1106-1113.
    17. Kaplanis, S. & Kaplani, E., 2007. "A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values," Renewable Energy, Elsevier, vol. 32(8), pages 1414-1425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Durlinger, Bart & Reinders, Angèle & Toxopeus, Marten, 2012. "A comparative life cycle analysis of low power PV lighting products for rural areas in South East Asia," Renewable Energy, Elsevier, vol. 41(C), pages 96-104.
    3. Zhang, Da & Tang, Songlin & Lin, Bao & Liu, Zhen & Zhang, Xiliang & Zhang, Danwei, 2012. "Co-benefit of polycrystalline large-scale photovoltaic power in China," Energy, Elsevier, vol. 41(1), pages 436-442.
    4. Hong, Taehoon & Koo, Choongwan & Kim, Hyunjoong & Seon Park, Hyo, 2014. "Decision support model for establishing the optimal energy retrofit strategy for existing multi-family housing complexes," Energy Policy, Elsevier, vol. 66(C), pages 157-169.
    5. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    6. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    7. Corrêa, Tomás Perpétuo & Seleme, Seleme Isaac & Silva, Selênio Rocha, 2012. "Efficiency optimization in stand-alone photovoltaic pumping system," Renewable Energy, Elsevier, vol. 41(C), pages 220-226.
    8. Kaldellis, J.K. & Kapsali, M. & Kaldelli, El. & Katsanou, Ev., 2013. "Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications," Renewable Energy, Elsevier, vol. 52(C), pages 197-208.
    9. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    10. Chan-Joong Kim & Taehoon Hong & Jimin Kim & Daeho Kim & Dong-yeon Seo, 2015. "A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    11. Nfah, E.M. & Ngundam, J.M., 2012. "Identification of stakeholders for sustainable renewable energy applications in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4661-4666.
    12. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    13. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    14. Tsiaras, Evangelos & Papadopoulos, Demetrios N. & Antonopoulos, Constantinos N. & Papadakis, Vagelis G. & Coutelieris, Frank A., 2020. "Planning and assessment of an off-grid power supply system for small settlements," Renewable Energy, Elsevier, vol. 149(C), pages 1271-1281.
    15. Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
    16. Hong, Taehoon & Koo, Choongwan & Kwak, Taehyun, 2013. "Framework for the implementation of a new renewable energy system in an educational facility," Applied Energy, Elsevier, vol. 103(C), pages 539-551.
    17. Nicholls, A. & Sharma, R. & Saha, T.K., 2015. "Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia," Applied Energy, Elsevier, vol. 159(C), pages 252-264.
    18. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
    19. Hong, Taehoon & Koo, Choongwan & Kwak, Taehyun & Park, Hyo Seon, 2014. "An economic and environmental assessment for selecting the optimum new renewable energy system for educational facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 286-300.
    20. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    21. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.
    22. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    2. Chel, Arvind & Tiwari, G.N., 2011. "A case study of a typical 2.32Â kWP stand-alone photovoltaic (SAPV) in composite climate of New Delhi (India)," Applied Energy, Elsevier, vol. 88(4), pages 1415-1426, April.
    3. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
    4. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    5. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    6. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    7. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    8. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    9. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    10. Sivaraman, Deepak & Moore, Michael R., 2012. "Economic performance of grid-connected photovoltaics in California and Texas (United States): The influence of renewable energy and climate policies," Energy Policy, Elsevier, vol. 49(C), pages 274-287.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Kaldellis, John & Zafirakis, Dimitrios & Kavadias, Kosmas & Kondili, Emilia, 2012. "Optimum PV-diesel hybrid systems for remote consumers of the Greek territory," Applied Energy, Elsevier, vol. 97(C), pages 61-67.
    13. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    14. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    15. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    16. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    17. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    18. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.
    19. Zhang, Da & Tang, Songlin & Lin, Bao & Liu, Zhen & Zhang, Xiliang & Zhang, Danwei, 2012. "Co-benefit of polycrystalline large-scale photovoltaic power in China," Energy, Elsevier, vol. 41(1), pages 436-442.
    20. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1444-1454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.