IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2600-d360705.html
   My bibliography  Save this article

Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–2018)

Author

Listed:
  • Tianqi Rong

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Pengyan Zhang

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China
    Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475001, China)

  • Wenlong Jing

    (Guangzhou Institute of Geography, Guangzhou 510070, China
    Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou 510070, China
    Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China)

  • Yu Zhang

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Yanyan Li

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Dan Yang

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Jiaxin Yang

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Hao Chang

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

  • Linna Ge

    (Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Region, Research Center of Regional Development and Planning, Institute of Agriculture and Rural sustainable Development, Henan University, Kaifeng 475004, China)

Abstract

Land use change is the second largest source of greenhouse gas emissions after fossil combustion, which can hurt ecological environment severely. Intensive study on land use carbon emissions is of great significance to alleviate environmental pressure, formulate carbon emission reduction policy, and protect ecological development. The lower Yellow River area is an important area of economic development, grain cultivation, and agricultural production in China. Land use change has significant economic, environmental, and ecological impacts in this region. Deep study of land used carbon emissions and its influencing factors in the lower Yellow River area is not only of great significance to the environmental improvement in the Yellow River basin, but also can provide references for the research of other basins. Based on this, this paper studies the land use carbon emissions of 20 cities in the lower Yellow River area from 1995 to 2018. The results showed that from 1995 to 2018, the land use change was characterized by the decrease of the ecological land and the increase of the built-up land significantly. The overall carbon emission of the lower Yellow River area is increasing, and the built-up land is the main factor that leads to the increase of carbon emission, which can be also proven by the analysis of the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The economic contributive coefficient (ECC) and ecological support coefficient (ESC) of carbon emission in the lower Yellow River area show a trend of high in Zhengzhou, Jinan, and Zibo and low in Zhoukou, Shangqiu, and Heze, and there was no significant changes during the study period, which indicates that each city did not achieve the coordinated development of the ecological economy. Finally, analysis results of the STIRPAT model indicated that the area of built-up land had the greatest impact on land use carbon emissions, followed by tertiary industry, whereas per capita gross domestic product (GDP) had the smallest impact. For every 1% increase in the area of built-up land, carbon emissions increased by 1.024%. By contrast, for every 1% increase in the contribution of tertiary industry to the GDP and per capita GDP, carbon emissions decreased by 0.051% and 0.034%, respectively. According to the study, there are still many problems in the coordinated development of economy and ecology in the lower Yellow River area. The lower Yellow River area should control the expansion of built-up land, afforestation, development of technology, reduction of carbon emissions, and promotion of the high-quality development of the Yellow River Basin.

Suggested Citation

  • Tianqi Rong & Pengyan Zhang & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Jiaxin Yang & Hao Chang & Linna Ge, 2020. "Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–20," Energies, MDPI, vol. 13(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2600-:d:360705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    2. Mahendra Kumar Singh & Deep Mukherjee, 2019. "Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3015-3031, December.
    3. Yangyang Chen & Cong Chen & Hao Wen & Jian-min Jiang & Qiong Zeng & Hongping Shu & Zhong Hong, 2019. "From Use Case to Use Case Slices: An Automated Approach," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 10(4), pages 24-50, October.
    4. Greening, Lorna A. & Ting, Michael & Krackler, Thomas J., 2001. "Effects of changes in residential end-uses and behavior on aggregate carbon intensity: comparison of 10 OECD countries for the period 1970 through 1993," Energy Economics, Elsevier, vol. 23(2), pages 153-178, March.
    5. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    6. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    7. Li Gao & Xin Wen & Yuntong Guo & Tianming Gao & Yi Wang & Lei Shen, 2014. "Spatiotemporal Variability of Carbon Flux from Different Land Use and Land Cover Changes: A Case Study in Hubei Province, China," Energies, MDPI, vol. 7(4), pages 1-19, April.
    8. R. A. Houghton, 2002. "Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy," Climate Policy, Taylor & Francis Journals, vol. 2(1), pages 71-88, March.
    9. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    10. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    11. Schipper, Lee & Murtishaw, Scott & Khrushch, Marta & Ting, Michael & Karbuz, Sohbet & Unander, Fridtjof, 2001. "Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995," Energy Policy, Elsevier, vol. 29(9), pages 667-688, July.
    12. Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.
    13. Yunfeng Cen & Pengyan Zhang & Yuhang Yan & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Xin Liu & Wenliang Geng & Tianqi Rong, 2019. "Spatial and Temporal Agglomeration Characteristics and Coupling Relationship of Urban Built-Up Land and Economic Hinterland—A Case Study of the Lower Yellow River, China," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    14. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    15. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    16. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    17. Stern, David I. & Jotzo, Frank, 2010. "How ambitious are China and India's emissions intensity targets?," Energy Policy, Elsevier, vol. 38(11), pages 6776-6783, November.
    18. Xiangzheng Deng & Jianzhi Han & Fang Yin, 2012. "Net Energy, CO 2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China," Energies, MDPI, vol. 5(7), pages 1-15, June.
    19. Jun Yang & Weiling Liu & Yonghua Li & Xueming Li & Quansheng Ge, 2018. "Simulating Intraurban Land Use Dynamics under Multiple Scenarios Based on Fuzzy Cellular Automata: A Case Study of Jinzhou District, Dalian," Complexity, Hindawi, vol. 2018, pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    2. Yulia I. Pyzheva & Evgeniya V. Zander & Anton I. Pyzhev, 2021. "Impacts of Energy Efficiency and Economic Growth on Air Pollutant Emissions: Evidence from Angara–Yenisey Siberia," Energies, MDPI, vol. 14(19), pages 1-10, September.
    3. Yu Zhang & Wenliang Geng & Pengyan Zhang & Erling Li & Tianqi Rong & Ying Liu & Jingwen Shao & Hao Chang, 2020. "Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    4. Xiaomin Guo & Chuanglin Fang, 2021. "Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province," Land, MDPI, vol. 10(12), pages 1-18, November.
    5. Maria Spyridoula Tzima & Athos Agapiou & Vasiliki Lysandrou & Georgios Artopoulos & Paris Fokaides & Charalambos Chrysostomou, 2023. "An Application of Machine Learning Algorithms by Synergetic Use of SAR and Optical Data for Monitoring Historic Clusters in Cypriot Cities," Energies, MDPI, vol. 16(8), pages 1-20, April.
    6. Yichen Ding & Yaping Huang & Lairong Xie & Shiwei Lu & Leizhou Zhu & Chunguang Hu & Yidan Chen, 2022. "Spatial Patterns Exploration and Impacts Modelling of Carbon Emissions: Evidence from Three Stages of Metropolitan Areas in the YREB, China," Land, MDPI, vol. 11(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    2. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    3. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    4. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    5. Jianjian He & Pengyan Zhang, 2018. "Evaluating the Coordination of Industrial-Economic Development Based on Anthropogenic Carbon Emissions in Henan Province, China," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    6. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    7. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    8. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    9. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    10. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    11. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    12. Linhe Chen & Yanhong Hang & Quanfeng Li, 2023. "Spatial-Temporal Characteristics and Influencing Factors of Carbon Emissions from Land Use and Land Cover in Black Soil Region of Northeast China Based on LMDI Simulation," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    13. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    14. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    15. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    16. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    17. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    18. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    19. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2600-:d:360705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.