IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1310-d689708.html
   My bibliography  Save this article

Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province

Author

Listed:
  • Xiaomin Guo

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chuanglin Fang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Carbon emission (CE) threatens global climate change severely, leading to the continuous strengthening of the greenhouse effect. Land use changes can greatly affect the ecosystem carbon budget and anthropogenic CE. Based on the land use grids, net ecosystem productivity (NEP), energy consumption-related CE, this study employed various methods to investigate the impact of land use change on carbon balance. The results showed 10.03% of total land use area has land use type changed between 2000 and 2015. Built-up land occupied cropland was the main land use transfer type. The period with the most intense land use changes was 2005–2010, which was constant with the process of China’s urbanization. NEP presented an overall increasing trend excluding built-up land and water areas. Temporally, CE showed an increasing trend in 2000–2015, especially in the industry sector. Spatially, areas with the high energy-related CE were mainly distributed in the south, which has a relatively high economic level. The land use intensity values of cities in Jiangsu all presented an overall increasing trend, which is related to the economic development and local endowment. Cities with higher land use intensity were usually accompanied with high CE, suppressing NEP growth. From 2000 to 2015, soil carbon storage reduced by 0.15 × 10 8 t, vegetation carbon storage reduced by 0.04 × 10 8 t, and CE reached 17.42 × 10 8 t. Total CE caused by land use change reached 15.46 × 10 8 t. The findings can make references for the low-carbon development from ecological land protection, strengthen land management, and optimize urban planning.

Suggested Citation

  • Xiaomin Guo & Chuanglin Fang, 2021. "Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province," Land, MDPI, vol. 10(12), pages 1-18, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1310-:d:689708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Linlin & Zhang, Yan & Sun, Xiaoxi & Li, Jinjian, 2017. "Analyzing the spatial pattern of carbon metabolism and its response to change of urban form," Ecological Modelling, Elsevier, vol. 355(C), pages 105-115.
    2. Corbera, Esteve & Martin, Adrian & Springate-Baginski, Oliver & Villaseñor, Adrián, 2020. "Sowing the seeds of sustainable rural livelihoods? An assessment of Participatory Forest Management through REDD+ in Tanzania," Land Use Policy, Elsevier, vol. 97(C).
    3. Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
    4. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    5. Chuai, Xiaowei & Yuan, Ye & Zhang, Xiuying & Guo, Xiaomin & Zhang, Xiaolei & Xie, Fangjian & Zhao, Rongqin & Li, Jianbao, 2019. "Multiangle land use-linked carbon balance examination in Nanjing City, China," Land Use Policy, Elsevier, vol. 84(C), pages 305-315.
    6. Jianhong Mu & Anne Wein & Bruce McCarl, 2015. "Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1041-1054, October.
    7. Sanders, Anna J.P. & Ford, Rebecca M. & Keenan, Rodney J. & Larson, Anne M., 2020. "Learning through practice? Learning from the REDD+ demonstration project, Kalimantan Forests and Climate Partnership (KFCP) in Indonesia," Land Use Policy, Elsevier, vol. 91(C).
    8. Irawan, Silvia & Tacconi, Luca & Ring, Irene, 2013. "Stakeholders' incentives for land-use change and REDD+: The case of Indonesia," Ecological Economics, Elsevier, vol. 87(C), pages 75-83.
    9. Jun Yang & Gui Jin & Xianjin Huang & Kun Chen & Hao Meng, 2018. "How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    10. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    11. Tianqi Rong & Pengyan Zhang & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Jiaxin Yang & Hao Chang & Linna Ge, 2020. "Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–20," Energies, MDPI, vol. 13(10), pages 1-18, May.
    12. Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.
    13. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    14. Trevor F Keenan & I. Colin Prentice & Josep G Canadell & Christopher A Williams & Han Wang & Michael Raupach & G. James Collatz, 2016. "Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    15. Pengyan Zhang & Yanyan Li & Wenlong Jing & Dan Yang & Yu Zhang & Ying Liu & Wenliang Geng & Tianqi Rong & Jingwen Shao & Jiaxin Yang & Mingzhou Qin, 2020. "Comprehensive Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity," Complexity, Hindawi, vol. 2020, pages 1-12, May.
    16. Tahsin Jilani & Tomoko Hasegawa & Yuzuru Matsuoka, 2015. "The future role of agriculture and land use change for climate change mitigation in Bangladesh," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1289-1304, December.
    17. Jianglong Chen & Jinlong Gao & Feng Yuan & Yehua Dennis Wei, 2016. "Spatial Determinants of Urban Land Expansion in Globalizing Nanjing, China," Sustainability, MDPI, vol. 8(9), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peijia Wang & Ping Wang, 2022. "Spatio-Temporal Evolution of Land Use Transition in the Background of Carbon Emission Trading Scheme Implementation: An Economic–Environmental Perspective," Land, MDPI, vol. 11(3), pages 1-21, March.
    2. Lan Song & Zhiji Huang, 2022. "Exploring the Effects of Industrial Land Transfer on Urban Air Quality Using a Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    3. Yuanyuan Lou & Dan Yang & Pengyan Zhang & Ying Zhang & Meiling Song & Yicheng Huang & Wenlong Jing, 2022. "Multi-Scenario Simulation of Land Use Changes with Ecosystem Service Value in the Yellow River Basin," Land, MDPI, vol. 11(7), pages 1-17, June.
    4. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    5. Kai Guo & Zhenhao He & Xiaojin Liang & Xuanwei Chen & Renbo Luo & Tianqi Qiu & Kexin Zhang, 2023. "Examining Relationships between Regional Ecological Risk and Land Use Using the Granger Causality Test Applied to a Mining City, Daye, China," Land, MDPI, vol. 12(11), pages 1-17, November.
    6. Tianlin Zhai & Linke Wu & Yuanmeng Chen & Mian Faisal Nazir & Mingyuan Chang & Yuanbo Ma & Enxiang Cai & Guanyu Ding & Chenchen Zhao & Ling Li & Longyang Huang, 2022. "Ecological Compensation in the Context of Carbon Neutrality: A Case Involving Service Production-Transmission and Distribution-Service Consumption," Land, MDPI, vol. 11(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuai, Xiaowei & Yuan, Ye & Zhang, Xiuying & Guo, Xiaomin & Zhang, Xiaolei & Xie, Fangjian & Zhao, Rongqin & Li, Jianbao, 2019. "Multiangle land use-linked carbon balance examination in Nanjing City, China," Land Use Policy, Elsevier, vol. 84(C), pages 305-315.
    2. Huxiao Zhu & Xiangjun Ou & Zhen Yang & Yiwen Yang & Hongxin Ren & Le Tang, 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(8), pages 1-21, August.
    3. Zhou, Qiang & Liu, Yong & Qu, Shen, 2022. "Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Gao, Runyi & Chuai, Xiaowei & Ge, Jingfeng & Wen, Jiqun & Zhao, Rongqin & Zuo, Tianhui, 2022. "An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China," Land Use Policy, Elsevier, vol. 116(C).
    5. Yuzhe Li & Jiangwen Fan & Zhongmin Hu, 2018. "Comparison of Carbon-Use Efficiency Among Different Land-Use Patterns of the Temperate Steppe in the Northern China Pastoral Farming Ecotone," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    6. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    7. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    8. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    9. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    10. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    11. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    12. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    13. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    14. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    15. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    16. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    17. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    18. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    19. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    20. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1310-:d:689708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.