IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1455-d223523.html
   My bibliography  Save this article

Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East

Author

Listed:
  • David Katz

    (Department of Geography and Environmental Studies, University of Haifa, Haifa 39105, Israel)

  • Arkadiy Shafran

    (Department of Geography and Environmental Studies, University of Haifa, Haifa 39105, Israel)

Abstract

The Levant area of the Middle East suffers from both chronic water scarcity and high population growth. It is also a region highly dependent of fossil fuels. In order to address current and expected water demands, several countries in the region, including Israel, Jordan and the Palestinian Authority (PA), are depending increasingly on desalination, which is expected to intensify energy consumption and energy related emissions. Given that the region also benefits from high levels of solar irradiation nearly year-round, much attention has been given to the possibility of developing renewable energy in general and for desalination specifically. This paper presents partial results of a pre-feasibility study assessing the prospects of transfers of desalinated water from Israel and/or the PA, which have access to the Mediterranean Sea, to Jordan, in exchange for renewable solar-produced electricity from Jordan, which, unlike its neighbors, has an abundance of available open space suitable for solar production. The analysis shows that single-axis tracking photovoltaic (PV) systems appear to be the most economically feasible option. Moreover, the study shows that the proposed idea of international cooperation and water-energy exchanges, while facing political obstacles, could provide numerous economic, environmental and geopolitical benefits to all parties involved. As such, an arrangement such as that examined may be a more promising means of promoting both desalination and renewable energy than if each country unilaterally develops desalination and renewable energy in isolation from one another.

Suggested Citation

  • David Katz & Arkadiy Shafran, 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East," Energies, MDPI, vol. 12(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1455-:d:223523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohsen, Mousa S. & Akash, Bilal A., 1998. "Potentials of wind energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 441-446.
    2. Wellmann, Johannes & Meyer-Kahlen, Bernhild & Morosuk, Tatiana, 2018. "Exergoeconomic evaluation of a CSP plant in combination with a desalination unit," Renewable Energy, Elsevier, vol. 128(PB), pages 586-602.
    3. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    4. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    5. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    6. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    7. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    8. Fischhendler, Itay & Herman, Lior & Anderman, Jaya, 2016. "The geopolitics of cross-border electricity grids: The Israeli-Arab case," Energy Policy, Elsevier, vol. 98(C), pages 533-543.
    9. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    10. Al-omary, Murad & Kaltschmitt, Martin & Becker, Christian, 2018. "Electricity system in Jordan: Status & prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2398-2409.
    11. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Nazmul Aunsary & Bo-Ching Chen, 2019. "Sustainable Water Treatment Management," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(2), pages 11-13, October.
    2. Serena Sandri & Hussam Hussein & Nooh Alshyab, 2020. "Sustainability of the Energy Sector in Jordan: Challenges and Opportunities," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    3. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    4. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    3. Md. Nazmul Aunsary & Bo-Ching Chen, 2019. "Sustainable Water Treatment Management," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(2), pages 11-13, October.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    6. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    7. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    9. Hamed, Tareq Abu & Bressler, Lindsey, 2019. "Energy security in Israel and Jordan: The role of renewable energy sources," Renewable Energy, Elsevier, vol. 135(C), pages 378-389.
    10. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    11. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    13. Arabnejad, Hossein & Mirzaei, Farhad & Noory, Hamideh, 2021. "Greenhouse cultivation feasibility using condensation irrigation (studied plant: Basil)," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.
    15. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    16. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    17. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    18. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    19. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    20. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1455-:d:223523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.