IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p525-d204125.html
   My bibliography  Save this article

Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study

Author

Listed:
  • Edwin R. Grijalva

    (University Institute for Automobile Research (INSIA), Universidad Politécnica de Madrid, 28031 Madrid, Spain
    Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Bourgeois N34-102 & Rumipamba, Quito 171508, Ecuador)

  • José María López Martínez

    (University Institute for Automobile Research (INSIA), Universidad Politécnica de Madrid, 28031 Madrid, Spain)

Abstract

The emissions of CO 2 gas caused by transport in urban areas are increasingly serious, and the public transport sector plays a vital role in society, especially when considering the increased demands for mobility. New energy technologies in urban mobility are being introduced, as evidenced by the electric vehicle. We evaluated the positive environmental effects in terms of CO 2 emissions that would be produced by the replacement of conventional urban transport bus fleets by electric buses. The simulation of an electric urban bus conceptual model is presented as a case study. The model is validated using the speed and height profiles of the most representative route within the city of Madrid—the C1 line. We assumed that the vehicle fleet is charged using the electric grid at night, when energy demand is low, the cost of energy is low, and energy is produced with a large provision of renewable energy, principally wind power. For the results, we considered the percentage of fleet replacement and the Spanish electricity mix. The analysis shows that by gradually replacing the current fleet of buses by electric buses over 10 years (2020 to 2030), CO 2 emissions would be reduced by up to 92.6% compared to 2018 levels.

Suggested Citation

  • Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:525-:d:204125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin R. Mallon & Francis Assadian & Bo Fu, 2017. "Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan," Energies, MDPI, vol. 10(7), pages 1-31, July.
    2. Laura Tribioli, 2017. "Energy-Based Design of Powertrain for a Re-Engineered Post-Transmission Hybrid Electric Vehicle," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    4. Edwin R. Grijalva & José María López Martínez & M. Nuria Flores & Víctor Del Pozo, 2018. "Design and Simulation of a Powertrain System for a Fuel Cell Extended Range Electric Golf Car," Energies, MDPI, vol. 11(7), pages 1-30, July.
    5. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    6. Jorge Nájera & Pablo Moreno-Torres & Marcos Lafoz & Rosa M. De Castro & Jaime R. Arribas, 2017. "Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging," Energies, MDPI, vol. 10(11), pages 1-16, October.
    7. Andrzej Łebkowski, 2018. "Steam and Oxyhydrogen Addition Influence on Energy Usage by Range Extender—Battery Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-20, September.
    8. Smith, William J., 2010. "Can EV (electric vehicles) address Ireland’s CO2 emissions from transport?," Energy, Elsevier, vol. 35(12), pages 4514-4521.
    9. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coppitters, Diederik & Verleysen, Kevin & De Paepe, Ward & Contino, Francesco, 2022. "How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty," Applied Energy, Elsevier, vol. 312(C).
    2. Maciej Dzikuć & Rafał Miśko & Szymon Szufa, 2021. "Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland," Energies, MDPI, vol. 14(11), pages 1-12, June.
    3. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    5. Miguel A. Martínez & Ángeles Cámara, 2021. "Environmental Changes Produced by Household Consumption," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Mirosław Karczewski & Grzegorz Szamrej & Janusz Chojnowski, 2022. "Experimental Assessment of the Impact of Replacing Diesel Fuel with CNG on the Concentration of Harmful Substances in Exhaust Gases in a Dual Fuel Diesel Engine," Energies, MDPI, vol. 15(13), pages 1-26, June.
    7. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    8. Călin Iclodean & Nicolae Cordoș & Adrian Todoruț, 2019. "Analysis of the Electric Bus Autonomy Depending on the Atmospheric Conditions," Energies, MDPI, vol. 12(23), pages 1-23, November.
    9. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    10. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    2. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    3. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    4. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    5. Raslavičius, Laurencas & Starevičius, Martynas & Keršys, Artūras & Pilkauskas, Kęstutis & Vilkauskas, Andrius, 2013. "Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania," Energy, Elsevier, vol. 55(C), pages 436-448.
    6. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    7. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    8. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    9. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    10. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    11. Álvarez, Roberto & Zubelzu, Sergio & Díaz, Guzmán & López, Alberto, 2015. "Analysis of low carbon super credit policy efficiency in European Union greenhouse gas emissions," Energy, Elsevier, vol. 82(C), pages 996-1010.
    12. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    13. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    14. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    15. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    16. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    17. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    18. Justin Fraselle & Sabine Louise Limbourg & Laura Vidal, 2021. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    19. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    20. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:525-:d:204125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.