IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3524-d267024.html
   My bibliography  Save this article

Evaluating the Investment Efficiency of China’s Provincial Power Grid Enterprises under New Electricity Market Reform: Empirical Evidence Based on Three-Stage DEA Model

Author

Listed:
  • Jingqi Sun

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping District, Beijing 102206, China)

  • Nuermaimaiti Ruze

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping District, Beijing 102206, China)

  • Jianjun Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping District, Beijing 102206, China)

  • Haoran Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping District, Beijing 102206, China)

  • Boyang Shen

    (Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK)

Abstract

The new round of electricity market reform in 2015 completely changed the profit pattern of power grid enterprises (PGEs) in China, and directly affected their investment plans. Under the new electricity market reform (NEMR), the government regulatory authority made higher requirements for the investment efficiency of PGEs, and the investment effectiveness hence became the core criterion for investment plans. Therefore, the PGEs are now attaching great importance to the investment efficiency. According to their geographical differences, this paper divides the Chinese provincial PGEs into three groups, namely eastern, central and western region enterprises. Based on the NEMR, we developed an evaluation system of investment efficiency for the above-mentioned enterprises. Moreover, this paper selects GDP per capita, electricity consumption in industry, and electrification rate as external environment variables, and conducts an empirical research on the investment efficiency of 31 provincial PGEs in China in 2017. The analysis reveals that three external environment variables have considerable impacts on the investment efficiency. Though the increase of GDP per capita and electricity consumption in industry are not conducive to improving investment efficiency, the advancement of electrification plays a positive role in its improvement. And from the real efficiency results, Tianjin, Liaoning, Jiangsu, and Fujian have relatively higher investment efficiency, while Henan, Shandong, and Shanghai exhibit lower investment efficiency. By comparing the investment efficiency of PGEs in the first and third stage, conclusions can be drawn that in the first stage the investment efficiency of PGEs was overestimated, and the inefficient investments prevailed some provincial PGEs, which caused by low scale efficiency.

Suggested Citation

  • Jingqi Sun & Nuermaimaiti Ruze & Jianjun Zhang & Haoran Zhao & Boyang Shen, 2019. "Evaluating the Investment Efficiency of China’s Provincial Power Grid Enterprises under New Electricity Market Reform: Empirical Evidence Based on Three-Stage DEA Model," Energies, MDPI, vol. 12(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3524-:d:267024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Y.X. & Jiao, J. & Chen, R.J. & Shu, H., 2018. "The optimization of Chinese power grid investment based on transmission and distribution tariff policy: A system dynamics approach," Energy Policy, Elsevier, vol. 113(C), pages 112-122.
    2. Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
    3. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    4. Shihong Zeng & Mimi Hu & Bin Su, 2016. "Research on Investment Efficiency and Policy Recommendations for the Culture Industry of China Based on a Three-Stage DEA," Sustainability, MDPI, vol. 8(4), pages 1-15, March.
    5. Harold Fried & Shelton Schmidt & Suthathip Yaisawarng, 1999. "Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 12(3), pages 249-267, November.
    6. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    7. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA)," Energy Economics, Elsevier, vol. 34(3), pages 634-644.
    9. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    12. Pereira, Marcio Giannini & Freitas, Marcos Aurélio Vasconcelos & da Silva, Neilton Fidelis, 2010. "Rural electrification and energy poverty: Empirical evidences from Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1229-1240, May.
    13. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    14. Changhong Zhao & Haonan Zhang & Yurong Zeng & Fengyun Li & Yuanxin Liu & Chengju Qin & Jiahai Yuan, 2018. "Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    15. Banker, Rajiv & Forsund, Finn R. & Zhang, Daqun, 2017. "Use of Data Envelopment Analysis for Incentive Regulation of Electric Distribution Firms," Data Envelopment Analysis Journal, now publishers, vol. 3(1-2), pages 1-47, November.
    16. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Jui-Kou Shang & Wei-Ting Hung & Chang-Fang Lo & Fei-Ching Wang, 2008. "Ecommerce and hotel performance: three-stage DEA analysis," The Service Industries Journal, Taylor & Francis Journals, vol. 28(4), pages 529-540, May.
    19. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    20. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    21. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yang & Guangyin Shang, 2020. "Smallholders’ Agricultural Production Efficiency of Conservation Tillage in Jianghan Plain, China—Based on a Three-Stage DEA Model," IJERPH, MDPI, vol. 17(20), pages 1-12, October.
    2. Wenhui Zhao & Ye Qiu & Wei Lu & Puyu Yuan, 2022. "Input–Output Efficiency of Chinese Power Generation Enterprises and Its Improvement Direction-Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    3. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    4. Ningxuan Guo & Yinan Wang & Gangfeng Yan & Jian Hou, 2020. "Non-Cooperative Game in Block Bidding Markets Considering Demand Response," Energies, MDPI, vol. 13(13), pages 1-18, June.
    5. Yixin Huang & Xinyi Liu & Zhi Zhang & Li Yang & Zhenzhi Lin & Yangqing Dan & Ke Sun & Zhou Lan & Keping Zhu, 2020. "Multi-Stage Transmission Network Planning Considering Transmission Congestion in the Power Market," Energies, MDPI, vol. 13(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingli Song & Guangshe Jia & Puwei Zhang, 2020. "An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    2. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    5. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    6. Surakiat PARICHATNON & Kamonthip MAICHUM & Ke-Chung PENG, 2018. "Measuring technical efficiency of Thai rubber production using the three-stage data envelopment analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(5), pages 227-240.
    7. Jie Wu & Ganggang Zhang & Qingyuan Zhu & Zhixiang Zhou, 2020. "An efficiency analysis of higher education institutions in China from a regional perspective considering the external environmental impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 57-70, January.
    8. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    9. Angela Stefania Bergantino & Enrico Musso, 2011. "A Multi-step Approach to Model the Relative Efficiency of European Ports: The Role of Regulation and Other Non-discretionary Factors," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 18, Edward Elgar Publishing.
    10. Avkiran, Necmi K. & Rowlands, Terry, 2008. "How to better identify the true managerial performance: State of the art using DEA," Omega, Elsevier, vol. 36(2), pages 317-324, April.
    11. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    12. Changhong Zhao & Haonan Zhang & Yurong Zeng & Fengyun Li & Yuanxin Liu & Chengju Qin & Jiahai Yuan, 2018. "Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    13. Niu, Yanliang & Li, Xin & Zhang, Jiangxue & Deng, Xiaopeng & Chang, Yuan, 2023. "Efficiency of railway transport: A comparative analysis for 16 countries," Transport Policy, Elsevier, vol. 141(C), pages 42-53.
    14. Xun Liu & Xiaoliang Yu & Simon Gao, 2019. "A quantitative study of financing efficiency of low‐carbon companies: A three‐stage data envelopment analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 858-871, July.
    15. Abdel Latef Anouze & Imad Bou-Hamad, 2021. "Inefficiency source tracking: evidence from data envelopment analysis and random forests," Annals of Operations Research, Springer, vol. 306(1), pages 273-293, November.
    16. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    17. Yang, Guo-liang & Fukuyama, Hirofumi & Chen, Kun, 2019. "Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach," Omega, Elsevier, vol. 84(C), pages 141-159.
    18. Pengyu Ren & Zhaoxia Liu, 2021. "Efficiency Evaluation of China’s Public Sports Services: A Three-Stage DEA Model," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    19. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    20. Qing Yang & Lingmei Fu & Xingxing Liu & Mengying Cheng, 2018. "Evaluating the Efficiency of Municipal Solid Waste Management in China," IJERPH, MDPI, vol. 15(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3524-:d:267024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.